
Imperial College London

Computing

MEng Project Report

Lokey:
Location Awareness Revisited

Author: Krishan Patel

Supervisor: Naranker Dulay

Second Marker: Michael Huth

June 18, 2013

Abstract

The proliferation of smartphones continues to create new markets for handheld applica-
tions. Smartphone apps can now be tailored to truly understand their users and their
surroundings. This opportunity remains untapped by a majority of the development com-
munity. With every update, dominant mobile operating systems attempt to make it easier
for developers to integrate location services. However, this has only had a small effect un-
til now; the majority of apps that do use location features are apps that focus solely on
location services. We believe that the ability to integrate more complex location features
into apps that do not rely on location alone will increase the benefit for users.

Conversely, users are often wary of apps that use their location information. Even if
an app is location aware and provides a great service through location analysis, some
users feel this is an invasion of privacy or are worried that their information may be used
maliciously.

Lokey is designed to solve both these problems. By giving developers a more feature-rich
location framework, Lokey allows them to spend less time trying to implement location
services and more time on the rest of their application. Users also benefit as Lokey
allows a fine-grained allocation of permissions, rather than the current absolute ‘allow’
or ‘disallow’ option. This investigation measures the effectiveness of the framework by
producing a location dependent app using only Lokey for all the location features.

Acknowledgements

I would first like to thank my supervisor, Dr. Naranker Dulay, for his invaluable assistance
throughout the course of this investigation. My thanks also go out to my second marker,
Professor Michael Huth, for his vital inputs after my interim report. I would also like to
thank my friends and family who have always believed in me and supported my work.
Their real-world testing was a key factor to the completion of this investigation.

Contents

1 Introduction 1
1.1 Contribution . 2

2 Background 5
2.1 Location Properties . 5

2.1.1 Geographic Coordinate System . 5
2.1.2 Distance . 6
2.1.3 Bearing . 6
2.1.4 Storage and Queries . 6

2.2 Location Options . 7
2.3 Improving Location Estimates . 8

2.3.1 Network Based Accuracy . 8
2.3.2 Basic Filtering . 8
2.3.3 Dead Reckoning . 9
2.3.4 Kalman Filter . 10

2.4 Improving Battery Life . 11
2.4.1 Substitution . 11
2.4.2 Journeys . 11

2.5 Frequent Locations . 11
2.5.1 Clustering . 12
2.5.2 Markov Models . 12

2.6 Using Other Sensors . 12
2.6.1 Accelerometer . 12
2.6.2 WiFi . 14

3 API Design 15
3.1 Comparison of Platforms . 15

3.1.1 Android . 15
3.1.2 iOS . 17

3.2 Android . 18
3.2.1 Services . 18

3.3 Developer Research . 19
3.3.1 Reasons for use . 19
3.3.2 Requested features . 19

3.4 API . 20
3.5 Summary . 24

4 System Architecture 25
4.1 Accessing Lokey’s API . 25
4.2 Lokey Service . 26

4.2.1 Modules . 26
4.2.2 Data Storage . 28
4.2.3 Permissions . 30

4.3 Lokey Client Service . 31

CONTENTS

4.4 Service Communication . 32
4.5 Summary . 32

5 Implementation 33
5.1 Journeys . 33

5.1.1 Detecting Starts . 33
5.1.2 Detecting Termination . 35
5.1.3 Using Other Sensors . 37

5.2 Improving Location Estimates . 38
5.2.1 Adaptive Location Updates . 38
5.2.2 Filtering . 39

5.3 Location Tracking . 40
5.4 Frequent Locations . 41
5.5 Destination Prediction . 42
5.6 Geofencing . 44

5.6.1 Interpolation . 46
5.7 Activity Tracking . 48

5.7.1 Step Detection . 48
5.7.2 Driving . 49

5.8 Continuous Running . 50
5.9 Permissions . 50
5.10 Summary . 51

6 Results and Evaluation 53
6.1 Lokey Application . 53
6.2 Client Library . 55
6.3 Resource Usage . 56

6.3.1 Battery . 57
6.3.2 Main Memory . 57
6.3.3 Persistent Memory . 58

6.4 Geofencing . 58
6.4.1 Accuracy . 58
6.4.2 Battery Use . 59

6.5 Frequent Locations Found . 60
6.6 Destinations Predicted . 60
6.7 Kites . 61
6.8 Developer Feedback . 62
6.9 Summary . 62

7 Conclusion 63
7.1 Future Work . 63

A Developer Guide 67

B Kites Screenshots 73

1 | Introduction

In recent years, location aware mobile applications have become increasingly popular.
By understanding the user’s location, an application can become tailored to the user’s
surroundings. Mobile applications such as friend finders and location aware search engines
are starting to become very popular in mobile marketplace.

However, the current mobile app stores comprise of either applications that are location
dependent (i.e. they only provide location based services) or applications that do not use
location services at all. The reason for this is the relative complexity of integrating useful
location features in apps whose main feature set is not location dependent.

For example, a deals application, like Groupon [11], could potentially provide a richer user
experience if it knew what stores the user was likely to visit. By using this information, the
application can become adapted to only show deals that are relevant to the user. Another
example is a taxi application. If the app had access to the users most common locations,
it could calculate the cost for a cab to these locations without the user having to explicitly
insert their information. This would provide a far smoother experience for users.

The complexity of developing a solution for problems like this lies in the fact that develop-
ers are only given access to the users current location (discussed further in section 3.1.1).
To acquire the kind of data mentioned in the example above, developers would have to
create their own location tracking service, which is not the easiest of tasks.

On the other hand, privacy remains a concern for users. With new companies emerging as
information sources everyday, users are growing increasingly cautious of what information
to share. This is particularly a problem for applications that use location services, as users
often fail to see the need for an app to know where they are. Location awareness would
allow user to have an enhanced experience and developers to have higher user numbers
and/or higher incomes. One of the main reasons for this concern is that users are generally
not made aware of what data is being saved about them, or why applications need this
data in the first place.

The aim of this investigation is to combine these two problems and produce a framework
that satisfies the needs of both developers and users. Our framework will provide apps
with access to richer information about the user’s location. For example, we will give
applications the ability to know where users are commonly located at certain times of the
day. To do this, we will create a background service that runs on the users device and
continuously tracks their location. We will allow users to view any data that is being
saved about them, and deny apps from using them if necessary.

1

2 CHAPTER 1. INTRODUCTION

A key component of the success of this service will be the extent to which it minimises
resource usage. Though preliminary investigations, we have found that constantly tracking
location through GPS can drain the battery as quickly as 9% per hour. By using network
signals instead, battery usage can be significantly reduced to 1% per hour. However,
network based locations are not as accurate as GPS. We investigate techniques to reduce
the uncertainty of future readings by tracking the users position continuously. By using
techniques such as dead reckoning and the Kalman filter (discussed in section 2.3.1), we
are able to significantly improve the precision of location estimates.

Using a variety of computing techniques, we will produce an API that uses the gathered
data to provide useful information. We will employ a range of techniques from machine
learning, to cluster locations relevant to the user, to using decision theory to accurately
predict a users movement patterns. By conducting these calculations in a central back-
ground service, we reduce the amount of computation done on the device as other apps
will not have to carry out the same calculations.

The framework is designed to be both broad and deep, to ensure that developers can
find a variety a features, with as much precision as required. Relevant features have been
determined by consulting current mobile developers. We have asked them why they would
use this framework, what they would require, and what they would use it for. By asking
existing developers, we gathered a deeper understanding of what is currently lacking, and
what would be the most helpful.

For the users, we have designed the framework to be completely transparent. By allowing
users to access and even modify the data stored about them, we believe users will be able
to have more trust in this framework. This works as an advantage for the users, as well as
an incentive for developers to use this framework instead of rolling out their own solution.
Users are also be able to see what information applications are requesting and are able to
deny those requests if they wish.

1.1 Contribution

The main contribution of this project is a mobile framework, Lokey, built to gather ac-
curate data about the location of users. This data is converted into useful information
that is made available for use by developers to facilitate easy development of location
aware applications. The framework has a user interface component from which end users
can see and manipulate what data has been gathered. Users are also able to see which
applications are accessing this data, and what parts of the data they are accessing. An
in-app permissions system allows users to allow or deny each of these applications access
to individual components of their location data.

The framework collects a number of interesting features about its users; for example it
gathers the users frequently visited locations and the users common journeys. These fea-
tures are further discussed in Chapters 4 and 5. The framework also provides applications
with ‘wake-ups’ when certain location based actions occur. This allows applications to
register their interest in events such as when the user reaches a certain area or when the
user starts moving. Using more complex techniques, the framework is able to accurately
extract predicted information about the user. For example Markov models are used to

1.1. CONTRIBUTION 3

predict where the user may be going when they leave a location.

The framework is judged, in part, by its accuracy and resource usage. Our framework
consumes almost no battery when the user is idle. We found that, when travelling, battery
usage is approximately 1% per hour. These impressive results are due to the adaptive
updates technique we discuss in Chapter 5. This technique allows us to maintain high
levels of accuracy even with reduced battery consumption.

The ease of use of the system is judged by development effort required to build a sample
application. We found that development of an application that would have required a
significant amount of effort was made simple to build by using our framework. We also
conducted interviews with a number of developers to ascertain whether they would be
willing to use a system like this, and the initial response was very positive.

4 CHAPTER 1. INTRODUCTION

2 | Background

This section presents any work carried out by others which is relevant to this investigation.
We will go through any foundational work or ideas that we have built upon. We will also
provide results of any preliminary work we have carried out.

2.1 Location Properties

In order to explain more complex features of location systems, we will first go through the
basic building blocks. This section provides formulae and ideas used by the majority of
location systems implemented today, and will be used by our system.

2.1.1 Geographic Coordinate System

A geographic coordinate system allows every location on the Earth to be specified as a
coordinate. The most commonly used coordinate system is the latitude-longitude system,
where:

• Latitude (φ) is defined as the angle that a straight line between the location and
the centre of the earth subtends with respect to the equatorial plane (the plane the
forms the equator where it cuts through the surface of the Earth).

• Longitude (λ) is defined as the angle between the meridian a location lies on and
the prime meridian (which goes through the Royal Observatory in Greenwich).

Figure 2.1: The direction of latitude and longitude angles on the surface of
the Earth.

5

6 CHAPTER 2. BACKGROUND

2.1.2 Distance

The distance between two locations cannot be calculated using Pythagoras’ theorem due
to the curvature of the Earth. The Haversine formula uses spherical trigonometry to
enable the calculation of the distance between points on the surface of a sphere. The
following formula can be used to calculate the distance between a pair of latitude-longitude
values:

a = sin2(
∆φ

2
) + cos(φ1). cos(φ2). sin

2(
∆λ

2
)

c = 2.atan2(
√
a,
√

1− a)

distance = R.c (2.1)

where R is the radius of the earth ≈ 6,371km.

2.1.3 Bearing

The bearing between two locations gives the angle between the ’forward’ direction and the
direction from one location to the other. The following formula can be used to calculate
the bearing between a pair of latitude-longitude values:

Θ = atan2(sin(∆λ). cos(φ2), cos(φ1). sin(φ2)− sin(φ1). cos(φ2). cos(∆λ)) (2.2)

Figure 2.2: Bearings as calculated by Equation 2.2

A key property of bearings that can be seen from Figure 2.2 is that they cannot simply
be negated to get the opposite direction.

2.1.4 Storage and Queries

Mobile devices generally provide an implementation of SQLite, which allows developers
to store persistent information in databases. Although powerful, SQL is not designed to
process locations out of the box. There has been a lot of research in the area, with a popular
tool being PostGIS. This is an open-source program that adds geographic support to
PostgreSQL databases. However, it would be incredibly tedious to translate a system like
this to work on mobile devices. Using techniques discussed in the research by Egenhofer
et al. into a new spatial query language [4], we will build a thin query system that allows
us to query location based information.

2.2. LOCATION OPTIONS 7

2.2 Location Options

There are two options for gathering a users location on a mobile device; Global Positioning
System (GPS) and network based location.

GPS requires the device to be in view of the sky so it can receive satellite signals. This
results in poor performance while indoors. This being said, it is very accurate when the
device is outdoors. It is typically able to pinpoint users to within 50 meters. However,
depending on the users location it can take up to 15 minutes to receive the time to first fix
(TTFF). The major drawback of GPS is the fact that if it is left on, it can quickly drain
the battery. Preliminary experiments have shown us that tracking using GPS can use up
to 9% of the battery per hour, even when the user was constantly in their home.

Cell tower triangulation uses the network cell towers the phone is communicating with, and
determines the devices location by using measured response times. Because the device may
only be connected to one or two towers at a time, the estimate can get very inaccurate.
Android enhances these estimates using Wi-Fi based information. By keeping a list of
routers and their approximate position, Google makes note of the Wi-Fi routers around
you and uses their location to enhance their response [20]. The negative side of cell tower
triangulation is that it requires a persistent internet connection to translate the cell tower
response times into a latitude and longitude (even though it uses very little data).

Figure 2.3 compares the battery usage of GPS and network locations. This experiment
was carried out on a ‘average’ (i.e. not top of the range) Android device. The device
was not used for any other purpose than location tracking, and did not optimise location
tracking in any way.

Figure 2.3: Battery usage per hour for Network Locations and GPS on a
mid-range Android device.

In general, it is highly unlikely that a user leaves their GPS tracker on while they go about
their daily business. In contrast, users usually have some connection to the internet, either

8 CHAPTER 2. BACKGROUND

through 3G, 4G or WiFi. For this reason, as well as the reasons given above, our plan is
to use GPS only as a ‘back up’, and allow the app to function as well as possible using
only network location services.

2.3 Improving Location Estimates

2.3.1 Network Based Accuracy

As mentioned, network based location estimates are more uncertain than GPS based
estimates. To calculate how much uncertainty there is when the mobile tries to determine
location, we created a simple Android application. The application would log the estimated
location every 90 seconds, and the range of uncertainty. We kept the application running
for approximately 6 days and observed the following results.

Figure 2.4: Uncertainty of location estimates gathered using network signals

As shown in Figure 4.1, the estimated location fluctuates a lot. During times when the user
is stationary, such as when they are sleeping (e.g. between points 1 - 396) the estimation
is relatively accurate. However, when they started moving the estimation became very
erratic, with the uncertainty radius often reaching over 500 meters.

2.3.2 Basic Filtering

The Android documentation encourages developers to filter location themselves in this
manner:

2.3. IMPROVING LOCATION ESTIMATES 9

Figure 2.5: Android Location Filtering Advice [7]

This shows that a significant amount of work is required just to get a relatively accurate
estimate for the users current location. This represents a small part of the large hurdle
developers have to overcome to make their apps location aware. The proposed framework
will incorporate techniques like this within their calls so developers do not need to worry
about these details.

2.3.3 Dead Reckoning

Dead reckoning is the process of calculating a users approximate location by using a
previously known position and the users speed and direction at the time. By using dead
reckoning, we believe we can significantly reduce the uncertainty of a users location. This
relies on the fact that users under normal circumstances are unlikely to drastically change
speeds in very short periods of time (e.g. a user starting at rest is not likely to have
travelled 500m in under 30 seconds).

We will be investigating whether a simple dead reckoning model can be used to reduce
the uncertainty. To allow this, calculated locations will kept so that when a new loca-
tion estimate is received, the last two confirmed locations will be used to calculate the
average speed and direction. By using dead reckoning, an estimate of the users current
location can be calculated, and compared to the actual measured location. If the uncer-
tainty of the measured location is high, the calculated position can be used to refine the
measurement.

10 CHAPTER 2. BACKGROUND

Figure 2.6: Dead reckoning used with two previously measured locations,
showing how uncertainty effects direction estimates

If we look at Figure 2.6, we can see that dead reckoning can also get very complicated due
to even the smallest amount of uncertainty in a reading. We can see above that the user
must be following the curve of the road, but it would be hard to produce a system that
can accurately evaluate this situation and give the correct position using dead reckoning
alone.

2.3.4 Kalman Filter

A more advanced approach to reducing the uncertainty of the users’ location estimate
involves using a Kalman filter. The Kalman filter is a recursive filter that reduces the un-
certainty associated with noisy data (such as our mobile location readings). By combining
the dead reckoning estimate for the users location and the mobile data location reading,
the Kalman filter should effectively be able to reduce the amount of uncertainty in the
reading, especially reducing the huge jumps to above 500m as shown in Figure 4.1.

The Kalman filter works as follows:

P (St|St−1, µt,Mt) (2.3)

A predication for the next state St is calculated using the previous state St−1, the dead
reckoning estimate of how much we have moved µt, and the mobile location reading Mt.
The state is considered to consist of a position, a velocity and an acceleration. We will
be using a simplified form of the Kalman filter to reduce the computational load between
location updates.

We first calculate a prediction for our next state using our estimated movement and our
previous state:

St = A.St−1 +B.µt (2.4)

We then estimate the variance in our state by using the covariance in the prior state
(Pt−1), and our expected variance in the measurement (Q):

Pt = A.Pt−1.A
T +Q (2.5)

2.4. IMPROVING BATTERY LIFE 11

By using a simplified form of the Kalman filter with any readings that come through, the
user’s estimated position can be made a lot more accurate without causing too much of a
computational hindrance.

2.4 Improving Battery Life

2.4.1 Substitution

Current mobile operating systems allow applications to chose whether they want to use
GPS or network based locations. However, this decision has to be made once and then
cannot be changed. Applications cannot dynamically switch location providers unless they
cancel the previous one and register a new listener.

Jeongyeup Paek et al. have carried out extensive work to create a “rate-adaptive posi-
tioning system for smartphone applications” [16]. Instead of only using network locations
or GPS, this system turns on the GPS receiver when it requires a more accurate reading.
They say “It is based on the observation that GPS is generally less accurate in urban areas,
so it suffices to turn on GPS only as often as necessary to achieve this accuracy.”

Similar work was carried out by Zhenyun Zhuang et al [22]. Their work improves the
efficiency of location sensing applications by (again) adapting the sensors as required. They
developed a technique they call substitution. The difference between this work and Paek’s
is in the way they determine when to turn on GPS. Their system learns ‘environmental
characteristics’ such as the availability and accuracy of providers. “The profiler monitors
and stores relevant information, including current locations, visit frequency, and sensing
characteristics (e.g., availability, positioning accuracy) of location providers.”

2.4.2 Journeys

Another interesting technique developed by Zhuang et al., referred to as suppression, is
to track whether the user is static or moving. They used alternate sensors, such as the
accelerometer, to detect when the user is stationary. At these times, the location receiver
was turned off to save battery. When the user started moving, the sensors were turned
back on. This is particularly useful for apps that continuously track location, as the
majority of users will spend most of their day in a single place (e.g. at home or work).
By turning off receivers at these times, the efficiency of these applications can be greatly
improved.

2.5 Frequent Locations

The work done by Daniel Ashbrook and Thad Starner [1] describes a system which learns
a user’s frequent locations given a large number of pre-recorded location readings for that
user. They cluster common locations together to form areas the user is most likely to visit
later e.g. their home or workplace.

12 CHAPTER 2. BACKGROUND

They also highlight a process refined from the work by Bhattacharya et al. [3] on predicting
the next location based on the current location. The process they describe uses Markov
Models created for each of the users frequent locations to determine which of the other
frequent locations a user may be headed towards.

While their work was done primarily on pre-recorded values (for learning), we feel this
work can be adapted to work with ‘live’ readings too. The techniques we will be using are
highlighted below.

2.5.1 Clustering

Clustering is the process of grouping entities together based on the distance measure. A
simple way to identify which cluster a location belongs to would be to assign it to the
cluster that is closest. However, the difficulty here will come in deciding:

• When to create a new cluster

• When two clusters should be merged together

• When a cluster should be split into smaller clusters, and how the original cluster
should be split

2.5.2 Markov Models

A Markov model is a tool for representing probability distributions over a sequence of ob-
servations. The assumption made by these models is that a future state can be determined
from the current state alone i.e. it is memoryless (known as the Markov property).

We will create a Markov model for each of the frequent locations we find to gain proba-
bilistic insights into where the user may be headed. Our work will differ from the work
done by Ashbrook, as they predicted the next location based on the current location alone.
We will be incorporating other elements of the current state into our model, including the
current time and day, and the bearing the user has travelled on so far.

2.6 Using Other Sensors

Mobile devices have the added advantage that they often come equipped with a number
of other sensors. These allow developers to access a range of information about the state
of the device and the environment around it. Sensor fusion is the combination of readings
from a number of different sensors (each of which may have some inherent noise), and can
allow for more accurate calculations. We will use these sensors in combination with our
location estimates to gain a more accurate picture of what the user is doing.

2.6.1 Accelerometer

An accelerometer is a device that measures acceleration. Most smartphones come equipped
with internal accelerometers, capable of measuring changes in the orientation and any

2.6. USING OTHER SENSORS 13

tilting motions. We felt that while location services will give us an accurate picture of
the users activity, we can use other sensors such as the accelerometer to confirm and even
suggest alterations to location readings as shown in [15]. For example, if the accelerometer
says the user is walking very fast (or indeed running), we can adjust our estimates of their
speed to reflect this. This is very important when the user initially sets off as the first
readings normally do not convey the users speed very accurately.

The Android operating system provides a simple API for accessing values calculated by
the internal triaxial accelerometer (which gives separate x, y and z readings). Although
calculating these values requires no extra battery (as the Android system is continuously
updating them), registering for change alerts on accelerometer values can cause the appli-
cation to drain the battery very fast.

Step Detection

A key component to the success of this technique will be the module which aims to
recognise the activity the user is carrying out. One of this simplest forms of activity
recognition is to recognise when a user takes a step; a field which has been researched
pretty extensively. By analysing the step rate, we can get a fairly accurate measurement
of the users speed.

The method we will conduct to detect steps is an amalgamation of techniques discussed
in [13] and [21]:

1. Calculate the magnitude of accelerometer reading values as

r =
√
x2 + y2 + z2 − 9.8 (2.6)

where 9.8 is subtracted to remove the effects of gravity.

2. Pass this value through a low pass filter, which would ideally result in a graph where
every local maximum corresponds to a footfall. We use a low pass filter as it reduces
the impact of high-frequency signals as steps would cause peaks in the low frequencies
not the high frequencies (which are basically noise). A possible solution to this would
be to use a FIR filter. However, this would not be very useful for detecting multiple
activities as it requires a ‘cut-off’ frequency, and we cannot define a frequency that
will work for both running (which needs a high ‘cut-off’) and walking (which needs
a lower ‘cut-off’). We have chosen a simple low pass filter which is more practical
for mobile phones as it is real-time and not very computationally expensive:

rc = 0.5 dt =
1

25
α =

dt

rc+ dt

x′ = α ∗ x+ (1− α) ∗ x′ (2.7)

where x′ represents the smoothed value and x is the raw input.

3. Generate a template which represents a basic step, and use template matching with
the results to determine.

4. Use a pseudo-derivative to measure exactly when a step takes place:

y(n) =
1

8
[2x(n) + x(n− 1) + x(n− 3) + 2x(n− 4)] (2.8)

14 CHAPTER 2. BACKGROUND

Note: we can effectively remove the leading fraction because we will not be using
these values themselves, just looking for whether they are positive or negative.

After the above, we should have a set of values where the 0-crossings represent foot-
falls.

Activity Detection

Activity detection is the process of determining what kind of activity the user is carrying
out. Allowing developers to be aware of the users activity fits into the bigger picture of
context awareness. An investigation by Ravi et al [18] attempted to solve recognising user
activity as a classification problem. Their experiment aimed to classify a wide range of
activities from walking to sit ups and the results were very positive. Due to the different
requirements of this investigation, we will only be analysing walking and running. While
their experiment analysed the mean, standard deviation, energy and correlation of moving
windows of readings, we will be focusing on the first two. Their experiment also tested
a number of methods for classification. We will be focusing on a k-nearest neighbour
algorithm which was proved to work well in their experiment.

2.6.2 WiFi

One of the main sources for data on mobile phones is WiFi, as often users will have limits
on how much 3G data they are allowed to consume. For this reason, a mobile device’s
WiFi receiver is usually kept on for most of the day. A big area of research recently has
been trying to use WiFi information to determine location (primarily indoors). Whilst a
lot of researchers have found success in this field, we felt it would be overkill to implement a
whole WiFi based location system for this investigation. However, to completely disregard
WiFi information would be wrong. Inspired by the work done by Rekimoto et al. [19],
we plan on using WiFi information as a small subsidiary component of our investigation.
This is further discussed in section 4.

3 | API Design

This chapter details the decisions made with regard to the API available to developers.
The first decision to be made will be the choice of operating system we develop the
framework for. We will choose the platform we feel would provide the best measure of
‘initial response’. If this response proves positive, we can extend the system to other
platforms in the future. We will analyse current deficiencies and consult developers to
gather an awareness of what features would be most beneficial to developers.

3.1 Comparison of Platforms

One the first decisions to be made is the choice of operating system for our solution. We
will analyse the most popular systems to understand what is currently available to devel-
opers. For this investigation, we concentrated on the two most popular mobile platforms:
Google’s Android and Apple’s iOS.

3.1.1 Android

Android currently has approximately 75% of the market share for smartphones [17]. This
is because there is a large range of Android devices, allowing many poorer countries access
to cheaper models. This results in the major difficulty of developing for Android; the
fragmented nature of the Android market means there are many corner cases which are
difficult to accurately test for. However, Google is very active in the developer community,
meaning there are lots of resources available to Android developers.

Location Services

Android provides the LocationManager class to give developers access to location services.
Taken directly from the Android developer guides [6], the current location services allow
developers to:

• Query for the list of all LocationProviders for the last known user location.

• Register/unregister for periodic updates of the user’s current location from a location
provider (specified either by criteria or name).

• Register/unregister for a given Intent to be fired if the device comes within a given
proximity (specified by radius in meters) of a given lat/long.

15

16 CHAPTER 3. API DESIGN

Point 3 above is a powerful and popular feature called geofencing. However, developers
have been very unhappy with its performance due to heavy battery use and inaccuracy, as
expressed by Greg Milette and Adam Stroud in their book [14]. They explain “Although
Android’s default proximity alert implementation may be simple to use, it can be costly
in terms of battery life. [...] Android sets up a LocationListener for every proximity alert
that is set. This means that (each) proximity alert will consume large amounts of battery
power because the device will receive location updates frequently.”

As described, the proximity alert system uses a very naïvealgorithm. It simply checks
through the entire list of points of interest for every location update. This results in very
poor battery performance and is the reason a lot of developers have chosen to implement
their own systems for this kind feature.

Permissions

Android’s permission system involves apps declaring their permissions when submitting
to the Google Play Store. Users can view permissions required by the app when installing.
However, there is no way for users to accept some permissions and deny others; they can
either install the app or not. With regards to location specifically, users also have the
option to allow all apps to use location or allow no apps to use location, as highlighted by
the Figure 3.1.

Figure 3.1: Android option for users to allow or disallow all apps to use
location services

3.1. COMPARISON OF PLATFORMS 17

3.1.2 iOS

Although Apple’s iOS has a substantially lower market share than Android, it is still the
platform of choice for a majority of developers. iOS is seen as a ‘safer’ route to generate
revenue [12].

Location Services

Taken directly from Apple’s location awareness programming guide [5], iOS provides the
following functionality for developers:

• The significant-change location service provides a low-power way to get the current
location and be notified of changes to that location. (iOS 4.0 and later).

• The standard location service offers a more configurable way to get the current
location.

• Region monitoring lets you monitor boundary crossings for a defined area. (iOS 4.0
and later on devices that support region monitoring).

Permissions

In contrast to Android, iOS does not have the same concept of permissions. Instead,
Apple manually looks through each application upon submission to judge whether user
information is being misused. Once approved, an application can do anything it likes using
Apple’s documented APIs. With regards to location, however, iOS provides the user with
a little more. Users are permitted to allow or disallow individual applications from using
location services, as shown in Figure 3.2.

Figure 3.2: iOS option for users to allow or disallow specific apps from using
location services

18 CHAPTER 3. API DESIGN

3.2 Android

After the analysis of the current state of the two platforms, we decided to target Android.
This decision was made for a number of reasons:

• Android higher market share and weaker permissions system (for location services)
provides a larger scope for improvement.

• Android’s developer community have been pretty vocal about their dissatisfaction
with the current API, so getting developers to use the framework produced should
be easier.

• Android is open-source [8], making it easier to work with as we can always go into
the source code and see why things work the way they do.

• Finally, in comparison to other operating systems, such as Apple’s iOS, Android
allows more freedom when it comes to features such as background services and
inter-app communication.

3.2.1 Services

The framework will be designed to allow any number of clients to access the gathered
location information. One of the key benefits this system will provide is that by using a
centralised model, location calculations can be done by just one app rather than each of
the clients doing the same work. Unfortunately, this is not provided by Android as an
out-of-the-box solution, meaning a custom solution will have to be implemented. Android
does allow applications to share data, as long as both applications agree.

Our plan for this project is to come up with a custom solution which takes advantage of
Android’s services. An Android service is an application component that is designed to
perform long running operations (in the background) [9]. Services can be used as contin-
ually running processes on the device to perform indefinite tasks, e.g. tracking location.
One problem which will need to be addressed is that the Android system can stop a service
at any time if it requires memory to be freed. The service will be stopped without any
signal or sign foretelling the developer what is about to happen. This is unavoidable, but
there is an API which informs the system that the service should be restarted as soon as
possible. For this reason, the development style of services needs to change to ensure that
at no point is any information held which has not been committed to memory. This way,
if the service is killed, the newly created service can ‘resume’ form the state saved by the
previous service.

Services can be bound to by Android activities, the foreground components which display
the user interface. By binding to the service, an activity can interact with and query the
service. For our framework, we would like a service that does not belong to any single app,
and so can be bound to by an activity of any client. As mentioned, this is not permitted
in Android, and so a proprietary solution will need to be developed to ensure to same
service can be accessed securely by any client authorised to use it.

3.3. DEVELOPER RESEARCH 19

3.3 Developer Research

To decide on the feature set and to deduce what developers would be looking for in a
framework like ours, we consulted a sample group of Android developers. The partici-
pants had a range of experience in developing location aware applications; from simple
applications that only require the current location to one application which tracked users
to learn their common underground stations.

3.3.1 Reasons for use

When questioned as to whether they would be willing to use a third party library in
their application, all the developers responded that they already use third party libraries.
When asked whether they would develop an application that communicates with another
application, a few of them expressed concern. The primary concern was, understandably,
what they would do if this application wasn’t installed. We eventually agreed that in
effect they could implement their apps functionality (for developers who came with ideas)
and use Lokey for extra functionality that would enhance the user experience rather than
embody it.

Another interesting piece of feedback we got was that developers liked that the user would
be able to control the clients’ access to information. More than half to the participants
used Android devices themselves, but only one said he rigorously checked applications
permissions before installing. The others simply said they wouldn’t install an app that
looked ‘dodgy’. Of the participants, a majority stated that they had received negative
feedback on the Play Store due to a misunderstanding about what the app was doing
with user’s data. They commented that there was no official way to provide reasons
for requesting certain resources. The de facto practice has now become to define these
reasons in the description when the app is uploaded. However, most users do not read
this description and are quick to complain when they feel any distrust. They concluded
that it would be helpful to allow users to dynamically control of what permissions are
given.

3.3.2 Requested features

Due to the time constraints of the project, a small number of features had to be selected
for implementation. We asked participants for any ideas they were willing to share, and
then suggested a few features we had previously considered. We also asked them for any
suggestions as to what they would do with the feature if it was implemented.

Geofencing

By far the most requested feature was geofencing; that is setting up virtual perimeters
and alerting an app when the user enters or exits this area. The majority of developers
declared that they would be interesting in adopting a library that efficiently implemented
geofencing. They said they could easily think of numerous applications for this kind of

20 CHAPTER 3. API DESIGN

technology, with examples including a ‘friend alerter’, a ‘profile changer’ and an alternate
system for workers to ‘clock in’ to work places.

We asked the developers why they felt this was a difficult task and why they did not
implement it using Android’s current solution. It was interesting to note that more than
half of the participants did not know this feature even existed. Out of the ones who had
heard of it, none had used it due to the “terrible battery problems” that came with it.
One developer had implemented his own solution for geofencing, which exactly did what
the current Android implementation did, except that it only used one Location provider
for all geofences. He expressed that this significantly improved the battery life compared
to the current Android solution. When probed further, the developer said that since he
had quite a few geofences, the app would constantly cycle through them checking if any
had been entered. This led to his app getting very poor reviews and the feature was
subsequently removed. A number of developers felt they could have developed a system
like this, but would be worried about the battery usage. The rest of the participants felt
they would not know how to accurately determine if the user had entered a small area
using network based location (which they had all used at some point in the past).

Start/Stop Moving

Another commonly requested feature is to be alerted when the user sets off from a location.
This was suggested for applications that can perform tasks such as: check the train stations
around the user for delays or warn the user about traffic near them (when they leave a
location).

Frequent Locations

A few of the participants suggested they could see use for being able to access a list of
the users frequent locations. Suggestions for actual uses include an app that can tell you
where the cheapest petrol station is around any of your frequent locations.

3.4 API

A key component to the success of this framework will be how appealing it is to developers.
Given the results in section 3.3, we have gathered that there is a range of functionality
developers would require in a product like Lokey. We have chosen the features we felt were
most practical and proposed the biggest challenges in terms of gathering information. This
section describes an overview of the features we have decided to implement, and the API
developers will use to access these features.

Tracking Location

One of the core components of the framework will be to receive the location updates and
filter them to maintain an accurate estimate of the users location. We will make these

3.4. API 21

filtered values available to developers in the same way as Android; they can ask for the
last known location and they can request continuous updates.

getLastKnownLocation() Returns the last known location of the user. If the user is
currently on a journey, it returns the last waypoint. If the user is stationary, it
returns the filtered stationary location. The locations returned here will be Lokey’s
filtered values, so will be more precise than the raw network readings.

startTrackingLocation(listener) Registers the client to be alerted about any future
changes of the users location. The client will be informed as long as they are ‘awake’
i.e. they haven’t been sent to the background by the user.

stopTrackingLocation(listener) Unregisters a client registered using the above call.

Tracking Journeys

Tracking journeys has a number of advantages. Not only will we understand more about
the user and their pattern of movements, we will be able to change certain aspects of the
system based on whether the user is currently on a journey or not. For example, we will
be able to reduce the rate of location updates while the user is not on a journey so that
battery can be conserved.

isCurrentlyOnJourney() Returns a value indicating whether the user is currently trav-
elling to a new location.

getCurrentJourneyDetails() Returns details about the current journey, or null if the
user is currently not travelling. This can be used by clients to quickly gain knowledge
about the users current state, i.e. a client can immediately establish an awareness
of where the user is going as soon as it is opened.

registerJourneyListener(listener) Registers the listener passed in as a parameter to
be notified whenever the user sets off from a stationary location and whenever the
users current journey comes to an end. In the latter case, the user will also be
provided with a summary of the journey.

unregisterJourneyListener(listener) Unregisters a listener registered using the above
call.

getCommonRoutes(latitude, longitude, radius) Returns a list of routes the user
has frequently taken. A location parameter will need to be provided to stop any
single call from accessing too much data at the same time. This is a problem as it
may block Lokey from serving requests from other clients.

The framework will be designed to be object oriented, so calls that return journey details
will return an instance of the following class:

22 CHAPTER 3. API DESIGN

Figure 3.3: The class used to encapsulate a common journey.

Tracking Frequent Locations

Users are likely to have certain locations they frequently visit, such as their home, their
workplace or their favourite restaurant. Since the framework is built to constantly track
the users location, it would be useful to understand where the user spends their time. This
would allow developers to use these locations to pre-compute factors of their experience
so users have the information waiting for them. The calculated frequent locations will be
available to developers using the following call:

getFrequentLocations(latitude, longitude, radius) Returns a list of frequent loca-
tions the user has visited. To curb the computational impact of malicious certain
calls, a location parameter will need to be provided, and only frequent locations near
this location will be returned. The range of frequent locations will also be passed as
a parameter, but will have a maximum value of 20km.

This call will return a list of objects of the following type:

Figure 3.4: The class used to encapsulate a common journey.

Predicting Destinations

As we are tracking the users frequent journeys, we believe this can be built into a solution
for predicting the destination a user is headed towards when they leave a location. We

3.4. API 23

will use the techniques discussed in section 2.5 to build a Markov model that represents
the probabilities of destinations. Developers will have access to this using the following
call:

getPredictedDestinations() Returns an ordered list of destinations Lokey has analysed
the user to be travelling towards. The locations returned will be locations frequently
visited by the user, and will only be included in the list if there is a strong probability
that they are the intended destination.

A key design decision to be made was how many destinations to return. We decided we
will return a list of predictions up to some limit. This means any destination that has a
probability above a certain threshold will be returned. This threshold will be determined
based on a case-by-case basis due to the fact that the probabilities may all be very low or
very high. Returned destinations will be an instantiation of the FrequentLocation object
described above.

Activity Detection

As discussed in section 2.6.1, using the accelerometer to track user movement provides
another measure of speed. These readings will be used to help confirm when a journey
starts/stops. However, since they will be implemented, we feel it would be a shame not
to allow developers to make use of these modules as well. We will expose the following
function to developers:

getCurrentActivity(duration) Analyses the user activity using the accelerometer for
a time period passed as a parameter. The minimum value for the duration is 5
seconds. The caller will then receive a callback containing the activity detected by
Lokey.

The returned value will be a member of an enumerated type. Possible values will include:
walking, running and driving.

Geofencing

Due to the particular point being made by a lot of developers that the one more advanced
location feature in Android doesn’t work, we decided to attempt to improve this feature.
We believe that by leveraging the information gathered form the features mentioned above,
we will be able to implement a geofencing solution that is far more battery conscious than
Android’s solution. We will allow developers to register points of interest in the same way
as the current implementation to enable a smooth transition to our system:

registerPointOfInterest(id, latitude, longitude, radius) Registers a point of inter-
est, which will cause the client to be alerted whenever the user enters or exits an
area. The location and circular radius must be provided as parameters, as well as a
unique identifier to allow clients to know which point of interest has been triggered.

unregisterPointOfInterest(id) Unregisters a point of interest (identified by the id
passed as a parameter) registered using the above call.

24 CHAPTER 3. API DESIGN

3.5 Summary

We have chosen to develop our framework for the Android mobile platform. While both
Android and iOS provide very few options to users in terms of controlling permissions,
iOS is slightly ahead of Android in that it allows users to block an individual application
from using location services. Thus, by developing the framework for Android, we can
make greater improvements on the currently available system.

To choose the API exposed to developers, we analysed the current features available in
Android. We also consulted developers on their opinions. We settled on six main features
that we feel will allow developers to access sufficiently detailed information about the users
location without having to do too much work themselves.

4 | System Architecture

This chapter discusses the architecture of the proposed framework. We will cover the
components involved, as well as any design decision made during the structuring process.
We will also detail how clients will access Lokey’s API, as this is not a common feature in
android.

4.1 Accessing Lokey’s API

A key architecture decision to be made is how to address the problem highlighted in section
3.2.1; that is, how to allow any number of clients to have access to Lokey’s functionality.
Essentially we want a single service to be running on the end users device, which carries
out all the location calculations. This service should then be open to queries by any client
application. As mentioned, this is not standard Android behaviour and so are required to
build a custom solution. The two options we have identified are:

1. Each client keep its own copy of a ‘LokeyService’. At any time only one client should
have started their version of this service, and all other clients on the device should
be able to communicate with this.

2. Have a standalone Lokey app which maintains its own running copy of the LokeySer-
vice. Clients will communicate with their own version of a provided ‘LokeyClientSer-
vice’, which will in turn communicate with the single instance of the LokeyService
on the device.

Option 1 would work as follows. When a client is started for the first time, it will check
if any another client on this device has started its own version of this service. If another
client has, the new client will bind to the existing service instead of starting its own.

There are a number of disadvantages associated with this option:

• Control of the service is handled by one of the clients. This means if the user kills
the client, the LokeyService which everybody relies on will also go down.

• If the client in control of the service is deleted, the other applications relying on the
service will have to start one service amongst themselves, using a form of distributed
leader election.The killed service would also have to pass over any information it has
gathered when it is removed from the device.

• Clients would all have to be allowed to communicate with each other, which meant
forcing each one to specify this in the manifest.

25

26 CHAPTER 4. SYSTEM ARCHITECTURE

Option 2 is more appealing as it will provide a standalone application, form which users can
change permissions, view their data etc. It also means that control of the running service
will be handled by the Lokey application rather than any one of the clients. This way, a
user will know the repercussions of their actions if they were to kill Lokey’s service.

This implementation does have the disadvantage that users will have to ensure Lokey is
installed on their device before they can use any client. We will try to mitigate this by
providing developers with easy checks to see if Lokey is installed and a dialog to show
users that will explain why and how to install Lokey.

Figure 4.1: Overview of main app and client components

4.2 Lokey Service

The LokeyService (hereby referred to as the main service) is where the majority of this
project will be focussed. This service is where the location data will be calculated and
saved, and where clients queries will eventually be logged, evaluated and satisfied. The
main things we will take into consideration when implementing this component are:

• Using as little battery as possible.

• Ensuring the service is always running, i.e. it starts up when the phone is turned on
or rebooted, and restarts as soon as possible if it is killed or crashes.

• Ensuring the service stays running for as long as possible. As mentioned, the envi-
ronment may choose to kill a service at any time to reclaim memory. The chances of
getting killed are significantly reduced by ensuring the service uses as little memory
as possible.

• Ensuring the service never looses any information. It will be necessary to make sure
the service never holds anything in local memory that has not been committed to a
persistent store.

4.2.1 Modules

Due to the nature of the features to be implemented, we have chosen to implement our
system using modular programming. This means responsibility for each distinct part of

4.2. LOKEY SERVICE 27

the functionality will be managed by a single component. The key reason for using this
modular approach is extensibility. There will be a few core modules which are used by
other ‘feature modules’. The design of this system should allow for new features (and
therefore new modules) to be easily linked to existing functionality.

The location trackermodule is the main focus of this investigation. It will be responsible
for filtering location updates to maintain a constant awareness of the users location. This
class will therefore also manage the lifecycle of journeys. It will use the movement tracker
and the wifi tracker to help confirm when a journey has started and when it has ended.
Once completed, journeys will be passed to the journey saver. This module will also
inform all interested clients about journey start / stops.

The journey saver module will efficiently save journey information. It will use the
frequent location saver to save the start and end points, and will save the waypoints with
these references into the journeys table.

The frequent location saver module will group together and save locations that the
user frequently visits. This component will respond to alerts made by location tracker, so
will not need to be continuously running. This module will make use of the wifi tracker
to make it easier to identify locations that essentially represent the same place (even if
the latitude/longitude values are different). By saving the SSID of any wifi connected to
at the location, we will be able to identify similar locations more easily.

The destination predictor module uses previous journeys to make heuristic predictions
about the destination the user is trying to reach. It is the job of this module to maintain
the Markov model created for predicting the users destination. When a journey ends,
the destination predictor will analyse the journey to make decisions about what should
be updated. This module will only respond to queries, so does not need to be constantly
running.

The wifi tracker module will monitor changes in the state of the device’s wifi connection.
The module will save the time at which connection changes occur. We chose not to
save this information in a database as it is transient and will not be important once the
connection has changed. However, it is saved to another form of persistent memory, the
user preferences, to stop any information being lost in case the service is killed.

The movement tracker is used to estimate the current activity of the user. By analysing
the changes in accelerometer readings, the movement tracker will estimate the users current
activity and (if applicable) the current speed. As mentioned in section 2.6.1, constantly
monitoring the accelerometer can quickly deplete the battery. Therefore, this component
will have to explicitly be turned on for a certain period of time (to be specified) by any
component which wishes to know the current activity.

The geofencing tracker module manages any points of interest registered by clients. It
will use location updates by the location tracker to calculate whether a point of interest
has been entered/exited. A key focus of this investigation will be to use this module as
efficiently as possible. Instead of loading all points of interest (from the database) and
checking through each one at every update, we will implement a system that only loads
points that look relevant. For this reason, this module will use the previous routes and
the predicted destinations to understand which points of interest to load.

28 CHAPTER 4. SYSTEM ARCHITECTURE

Figure 4.2 shows an overview of when the modules communicate.

Figure 4.2: Communication between modules. Dotted lines indicate asynchronous
updates while black lines indicate direct function calls.

4.2.2 Data Storage

As the service stays on for increasing amounts of time, we anticipate certain components
to have produced large amounts of data. This means there will be a significant amount of
data (up to megabytes) saved by the modules mentioned above. Android exposes an API
to allow applications to create and query SQLite databases.

The database maintained by the main service is shown in Figure 4.3. A summary of the
purpose of each table is given below:

Client Table This will hold an entry for every client that accesses Lokey, along with the
permissions that have been granted. As SQLite supports bitwise operators, we use
a single field to store all the permissions. When applications register for the first
time, they are able to provide reasons for requiring certain features. We save these
as an array of strings in the client table.

Log Table This will store all the calls made by a certain client, identified by its package.
The database will create a new entry for every new call, so will have to be ‘reduced’
at certain time intervals in an effort to summarise results over long periods of time.

Point Of Interest Table This will hold any points of interest that have been registered
by clients. Points of interest will be uniquely identified by the package of the client
and an id provided by the client.

Frequent Location Table This database will store frequent locations along with an
indication of the frequency of visit and time spent in each location. The database
should be structured in such a way that queries return a list locations that are both
spatially and temporally accurate. The locations are also stored with an associated
router SSID. We chose to use SSID instead of MAC address because in many cases

4.2. LOKEY SERVICE 29

Figure 4.3: Proposed database structure

MAC addresses will be different when the SSID indicates the location is the same,
for example at university.

Journey Table This will save journeys the user has taken. It will store the start location
and time, end location and time, along with a list of all the waypoints encountered.
The waypoints are stored as a string because it would be inefficient to create a new
table to hold all the waypoints and their associations (especially because it is highly
unlikely two exact same waypoints are ever observed).

Predicted Destinations Table This database will store the Markov models for each
of the frequent locations. Each database entry will hold the probability of the
destination being a certain location, given the initial location, the time and the
initial bearing.

30 CHAPTER 4. SYSTEM ARCHITECTURE

4.2.3 Permissions

As well as the calculation and storage of the information mentioned above, the main service
will also have to control access to this information. To do this, we will implement a custom
inter-app permissions system. This will allow end users to grant and revoke permissions
to specific actions by individual clients, through the Lokey user interface. Clients can then
be stopped from accessing certain information if the user so wishes.

Figure 4.4: Overview of the actions carried out by the main service when a client
makes a request

The following permissions will be enforced:

Lokey Manifest Permission This will be a fundamental requirement for any client as
it will be necessary to allow communication with Lokey. This permission will have
to be declared in the Manifest of the client, a process which is explored further in
the User Guide (Appendix A).

Lokey Permission This permission will be controlled by the user, and will determine if
the client can access any information on Lokey, i.e. it is a quick way for the user to
deny a client any access to his location information. This permission will initially be
determined when the client is opened for the first time and the user is presented with
a dialog asking to grant the client permission to access Lokey (see Appendix A). If
this permission is denied or revoked at a later time, any of the following permissions
will be rendered useless and will not even be checked.

Current Location Permission Required if the client wants to access the current loca-
tion based on calculations made by the LocationTracker.

Journey Details Permission Required if the client wishes to access details about the
current journey or if they wish to receive notifications about journey starts/stops.

Track Location Permission Required if the client wishes to receive notifications from
the LocationTracker whenever it updates its estimate for current location.

Geofencing Permission Required if the client wishes to register a point of interest.

View Routes Permission Required if the client wishes to see previous journeys.

4.3. LOKEY CLIENT SERVICE 31

Predicted Destinations Permission Required if the client wishes to know where Lokey
estimates the user is trying to get to.

Frequent Locations Permission Required for a client to access locations this user most
frequently visits.

Activity Permission Required if the client wishes to use the results obtained by the
MovementTracker to estimate what activity the user is carrying out.

4.3 Lokey Client Service

The LokeyClientService (referred to as the client service) will be bundled into each client
application, and will enable clients to access Lokey’s functionality. The size of this bundle
will be important as an app’s size has been shown to effect an end-users decision to
download/delete the app. We do not want clients to be impacted too much by the addition
of our library, so will need to make it as small as possible.

This service will have three core responsibilities:

1. Maintain a ‘binding’ to the main service, establishing where to send messages.

2. Bundle requests and their parameters in the correct format, ready to be interpreted
by the main service.

3. Unpack replies sent by the main service and forward them on to the client applica-
tion.

The client service will also be in charge of asking the user to grant the client the ‘Lokey
Permission’ when the application is first started. It will also need to alert the user if the
device does not have Lokey installed. Both of these will be implemented in the form of
dialogs which will inform the user what they can do to ensure the client works correctly.
These processes are highlighted in Figure 4.5.

Figure 4.5: Actions carried out by the client service when used for the first time

32 CHAPTER 4. SYSTEM ARCHITECTURE

4.4 Service Communication

On Android, one application cannot access the memory of another. For applications to
share information they must communicate in some way. This was one of the more technical
decisions we had to make during design of this framework; how to enable secure commu-
nication between the LokeyService and any LokeyClientService (which will be running on
two separate processes due to the nature of Android applications). There were two main
options we could have used to implement this interprocess communication:

1. The Android Interface Definition Language (AIDL) can be used to define the
programming interface that both the client and main service agree upon in order to
communicate. This requires the client service to bind to the main service and then
allows direct invoking of methods. This method would allow multiple client services
to bind to the main service at the same time.

2. Android allows message passing between processes using a Messenger. This is a
more primitive method, as message formats will have to be manually agreed upon
beforehand.

We decided to go with option 2 as it is the simpler method. It is applicable here because
there should never be a situation where two client services are communicating with the
main service. This is because communication should only occur when the client is in the
foreground (i.e. the user is actively using the client). Using option 2 also makes updating
the APIs simpler as we can add new messages which can be ignored by older versions of
the app. In contrast, the AIDL will not be compatible if Lokey updates and clients do
not.

4.5 Summary

In this chapter, we have described the architecture of the proposed system. Lokey will be
a downloadable, standalone application. From this application, users will be able to access
their information, change clients permissions, and monitor client usage. This application
will maintain a service that continually tracks the users location and other interesting
information such as frequent locations.

We then covered the core components of this service. We employ a modular design,
whereby components are each in charge of one aspect of Lokey’s functionality. The data
stored will be in a SQLite relational database. The service will also manage permissions
and access to APIs by clients.

Developers will be provided with a small library (the LokeyClientLibrary) which they
must include in their applications. This library will contain a service that automatically
binds to Lokey, and will enable communication. We have chosen to implement a message
passing system due to its ease of development and its extensibility.

5 | Implementation

This chapter will explain the implementation of the proposed framework. We will de-
scribe any noteworthy work and techniques we have developed through the course of this
investigation.

5.1 Journeys

A key component of the work done by the location tracker is to separate location readings
of users into times that the user is on the move and detecting when the user is staying in
a fixed place. By maintaining a sense of whether the user is on the move or stationary,
we can refine location estimates as highlighted in the next section. Accurately knowing
if the user is currently moving or not also allows us to refine the implementations in the
rest of this chapter to use as little battery as possible. For example, the update frequency
can be significantly reduced when we are sure the user is stationary and only needs to be
increased when we know they have set off.

However, detection of whether the user is moving or stationary is not a trivial task amidst
noisy location updates.

5.1.1 Detecting Starts

When the user starts moving from their previous location, we start a new journey. Detec-
tion of movement from a stationary location is complicated by the fact that arbitrary up-
dates may incorrectly place the user some distance away from their current location.

Maitaining the best estimate for current location

Accurately detecting true initial movements depends largely on having the best estimate
for the users current location. In areas of bad signal, it may be the case that every reading
is highly inaccurate. To combat this, we use a simplified version of the Kalman filter
technique to maintain an accurate estimate of the actual location:

33

34 CHAPTER 5. IMPLEMENTATION

µi+1 =

1

T 2
i

µ0 +
1

σ2i
y

1

T 2
i+1

(5.1)

1

T 2
i+1

=
1

T 2
i

+
1

σ2i
(5.2)

where µ is the current estimate, T is the variance of the current estimate, y is a new
reading and σ is the measured variance.

This equation outputs what is essentially a smoothed version of the readings, with all
readings squashed towards the estimated stationary location.

Detecting set offs

By maintaining an accurate estimate of the users current location, detecting deviations
becomes a lot easier. To detect if a user has set off from their stationary location, we
check if the new reading clearly differs from the stationary location. The difficulty comes
from the fact that even though the user is moving, it does not necessarily mean they have
started a journey. For example, at university a student may frequently move between
classes or rooms, but they have not actually set off on a new journey.

To check this accurately, we go through all readings obtained at the stationary location.
We analyse any readings that have a significant variance from the mean (but were still
classed as part of the stationary location) and use these to determine if the new location
indicates a set off.

Figure 5.1: An example sequence of the distances of readings from the es-
timated mean while in a stationary location. The pink area indicates points
which are considered outliers but are kept, and the dark red area indicates
points which are judged to either be too inaccurate or start a new journey.

From diagram 5.1 we can see an example of what our detection algorithm aims to achieve.
If the reading at 3 was witnessed on its own, it would either be judged to be the start of
a new journey or a random outlier (based on the accuracy of the reading). However, its

5.1. JOURNEYS 35

predecessors form a path of readings, each more distant from the mean, which seems to
indicate the user is travelling within a small area. For this reason 3 is accepted as a value
for the stationary location. If points 4 and 5 actually lay further it would be apparent that
in fact a journey has started. In this example we can see that points 4 and 5 get closer to
the mean which means point 3 was definitely part of the stationary location.

Missed Journey Points

The technique discussed for detecting journey starts is very strict, i.e. it may often only
detect a journey has started after wrongly saying a few of the updates belonged to the
stationary location. For this reason, it is important that we save previous locations which
deviate from the current stationary estimate by a significant amount. When a journey
start is detected, we then go through these saved readings (in reverse chronological order)
and judge wether these readings should actually be part of the journey.

To determine if a specific reading should be part of the current journey, we use the following
algorithm:

fullDist = disntaceBetween(stationaryLocation, currentLocation)
reversefor (reading in savedReadings):

if (reading.time() > lastTimeAtAverage)
dist1 = disntaceBetween(stationaryLocation, reading)
dist2 = disntaceBetween(currentLocation, reading)

if (dist1 + dist2 < 1.2 * fullDist)
journey.add(reading)

The final if statement effectively creates an ellipse which has its foci at the stationary
location and the location that started the journey. By creating an ellipse focused at these
points, we will only be looking for potential locations that could have laid on the route
to the current location. The value 1.2 was chosen after conducting a range of tests to
determine which value produced the best results. This process is shown pictorially in
Figure 5.3.

5.1.2 Detecting Termination

Detecting journey termination uses similar methods. Essentially we want to confirm that
the user hasn’t moved in a while to be sure they have reached their destination. There is
a caveat here that often somebody may stop over at an auxiliary destination for a short
amount of time (for example to pick something up) on the way to their main destina-
tion.

The idea for the algorithm we use to detect termination is to go through all previous
locations in reverse chronological order in the last 15 minutes, and check if we have moved
at least 50 meters from any of them. This has the advantage that it will account for short
stops in the journey. However, it also introduces the disadvantage that it will normally
take about 15 minutes to detect termination.

36 CHAPTER 5. IMPLEMENTATION

Figure 5.2: Example readings showing the area searched for any missed
readings when a journey is started

An optimisation we created for this algorithm is to inject intuition to remove the constant
values. The idea we decided on was that the longer a journey is, the more likely any stops
along the journey will occur. For example, a short journey from a user’s flat to the shops
will be unlikely to have any stops. However, on the walk to university a user is more likely
to stop to get a coffee or a snack. Using this, we adapted the algorithm to account for
stops of length based on the length of the journey, with something along the lines of:

maxStopTime = journey.length()/3

Since maxStopT ime represents an upper bound on the possible length of a stop, we
decided to use a more conservative value (i.e. it allows for longer stops than may be
common).

Wrongly assigned readings

As with detecting journey starts, since we have used a model that allows more locations
to be assigned to the journey than may be accurate, we have to save any entries that
deviated from the expected values by a significant amount. After the journey is seen to
have definitely terminated, we go through this list and remove any values that were, in
fact, indicating the journey had terminated earlier. This also ensures that journeys do not
have any duplicated information when they are saved.

While checking previous locations to see if they actually indicated a stationary location, we
had to ensure that outliers did not sway our decisions. For example consider the following
sequence of readings:

5.1. JOURNEYS 37

Figure 5.3: An example sequence of readings obtained at the end of a journey

In the above example, if we only looked for readings at the end of the journey that were
the same we would get 9, 8 and 7 (as we look backwards) and then see 6 is somewhere
else and stop. However, as we can see, 4 and 6 are actually just outliers. So we developed
a method which is robust to outliers by maintaining a count of values observed, and we
decide a value is an outlier if the count of values before it in the journey is above some
threshold (which is relative to the length of the journey).

5.1.3 Using Other Sensors

If we encounter a value that seems to indicate a start (or end), but is not strong enough
to absolutely declare this (such as point 3 in Figure 5.1), we use other sensors to increase
our knowledge of the current state and make a better decision.

Accelerometer

To determine if a journey has started, we use the activity detection module discussed in
2.6.1 to judge wether the user is moving. If the result comes back with a high probability
that a new activity is being carried out, then it is more likely that a journey is currently
taking place. Similarly if there is a low probability that an activity is being carried out,
it is more likely that the user is in a stationary position.

WiFi

When a journey has possibly started/ended, we query the WiFi manager to check wether
there has been a change in WiFi connection in the time frame created by the readings.
This uses the intuition that if the users are usually connected to a router when they are
in a location that is stationary, i.e. connected to wifi whilst at work or home. Therefore a
change in the connection of wifi usually indicates that the user has indeed started/ended
a journey.

38 CHAPTER 5. IMPLEMENTATION

5.2 Improving Location Estimates

One of the biggest questions posed by this investigation was to see how much we can
improve the location estimates given by the system. In order to provide clients with a more
accurate estimation of where the users are, we employ a number of filtering techniques.
A key advantage of splitting location readings into journeys is that we only have to apply
these filtering methods when the user is actually on a journey, which allows us to consume
a lot less CPU time.

5.2.1 Adaptive Location Updates

When Android services register for locations updates, they provide thee pieces of infor-
mation:

Provider Which Location Provider should be used. Possible values are the GPS provider
and the network provider

minDistance Throttles location updates so successive updates are at least a certain
distance apart.

minTime Throttles location updates so they are only sent when a certain amount of time
has passed between successive updates. The documentation stresses that this is not
intended to be exact, and updates can (and probably will) occur at time intervals
not consistent with the value passed here.

To achieve more accurate readings, we should use the GPS provider whenever needed.
However, Android does not provide an in-built solution to automatically change providers,
so we had to build a custom solution to handle this. The process we implemented de-
tects when the GPS provider has been enabled/disabled, and changes providers accord-
ingly.

We switch to GPS (if available) whenever network readings consistently fall below a certain
threshold. For example, if we have not received a new update that has accuracy above
300m, we will turn on GPS. Instead of completely switching providers, we will actually
have both running for a short period of time. If we find network location is still not
performing well after a certain period of time, we will turn it off and use GPS only. We
then intermittently turn on network locations to check if we have reached an area that
has better readings. The system is, however, heavily biased towards using the network
provider as much as possible. We found that turning on GPS to look for updates too
frequently does not help due to the time to first fix. Therefore, GPS is only turned on
when the network provider is seriously struggling to provide accurate updates.

Another component is how we change the minTime and minDistance to achieve more
accurate readings when we needed them. The default values used were 2 minutes for
minTime and 150m for minDistance. These values were calculated as an approximation
to the distance that is larger than the length of a house. Using this we were able to ensure
we do not get unnecessary readings for a user whilst they move around their house. The
values, however, also work well for larger stationary locations, e.g. university, where they
provide a good update interval for estimating the size of the location.

5.2. IMPROVING LOCATION ESTIMATES 39

When we have confirmed that a journey has started, we decrease these minimum values to
60 seconds for minTime and 50m for minDistance. These values allow far more accurate
readings, which are useful for when the user is moving. By only lowering the values
when we have confirmed a journey has started, we ensure the battery is not over-used by
constantly alerting Lokey. When we have confirmed the journey has been completed, we
revert back to the higher minimum values.

Finally, when a client has enabled live tracking (section 5.3), we decrease the values to
the minimum possible values. We do this so that clients remain as updated at all times as
possible. Due to the filtering techniques highlighted in the rest of this section, clients will
still only receive highly filtered values, reducing the amount of processing they will have
to carry out.

5.2.2 Filtering

A key contributor to the success of this investigation will be the techniques used to filter
location readings to reduce their uncertainty, and the extent to which we can improve
clients awareness where the user is. The main techniques we used to achieve this were
dead reckoning, and a simplified form of the Kalman filter.

The first filter we pass all readings through checks whether two readings are very close to
each other. If a new reading is less than 10 meters away from the last reading, we do the
following:

• If the new location has a higher accuracy, we update the previous location with the
new locations’ coordinates and accuracy value.

• If the old location has a higher accuracy we completely ignore the new location.

• If the new location has a bearing associated with it and the previous location did
not, we update the previous location to use the new locations bearing.

We then use dead reckoning and a technique inspired by the Kalman filter to reduce the
inaccuracy of further readings. To calculate a more accurate position based on the raw
reading, we do the following:

Calculate a ‘base’ location which lies on the edge of the circle depicting every position
which this reading could possibly include. The base location is found by using the fol-
lowing algorithm, which we use as a computationally cheaper alternative to finding the
intersection between the circle and the line created by following the current bearing from
the last position:

1. Find the distance from the last position to the centre of the new reading.

2. Subtract the new accuracy from this distance, giving the distance to the point on
the circle which is closest to the current position.

3. Find the ‘base’ by following the current bearing (between the last two positions) for
the distance calculated in 2.

From this base position, we use a factor of the previous speed to calculated a new position
within the radius of the reading. The direction used is a weighted average of the bearing

40 CHAPTER 5. IMPLEMENTATION

between the last two positions and the bearing towards the reading.

Figure 5.4: An example sequence of readings showing how a more accurate
location is extracted from an inaccurate reading. The x marks the calculated
‘base’

5.3 Location Tracking

This feature replicates the standard Android location updates, but uses Lokey’s technology
to filter and enhance location values sent to the client. The client uses the following API
to request location updates:

public void requestLastLocation()

public void startTrackingLocation(LokeyLocationTracker tracker)

public void stopTrackingLocation()

where LokeyLocationTracker is:

public interface LokeyLocationTracker
{

public void gotNewLocation(Location location);
}

In addition to the filtering mentioned in section 2.3.2, we also use the techniques discussed
in Chapter 5.2 to deliver precise locations to clients. One key observation we made during
development of this feature was that it is better for clients if location updates are made less
frequently. Instead of sending through a number of locations which are very close, clients
can make more use of fewer, but more accurate, updates. By also providing the user with

5.4. FREQUENT LOCATIONS 41

accurate measures of the current speed, overall speed, current bearing and overall bearing,
clients can themselves predict where the user is going up to a certain extent, and the goal
of Lokey is to update them frequently enough to keep their estimates correct.

5.4 Frequent Locations

Saving the users frequent locations was a key feature, as the destination prediction module
depended heavily on this. One of the early design choices we made was to ensure that
a location is only saved as a frequent location if the user does indeed spend a sufficient
amount of time there. For this reason, frequent locations are only saved once Lokey is
sure they are indeed important to the user.

When a journey is started, we will have a good measurement of where the user was in
between the end of the last journey and the current time. This information is the primary
source for our frequent locations calculation, as we can accurately say the user spent a
signification amount of time in this area.

Each frequent location is saved as a latitude-longitude pair, along with an estimated radius
of the area that location covers. The area for this is determined from the stationary
location used to calculate the frequent location. When a stationary location is processed,
it saves any values that were deemed to be part of the same place but still deviated
from the mean. These deviants are then used to calculate an approximate radius for the
frequent location. This is highlighted in Figure 5.6

Figure 5.5: Diagram showing a number of readings observed at a stationary
location. The red markers indicate readings and the blue marker indicates the
saved locaiton, with the blue circle indicating the radius saved.

When another stationary location is observed, it is compared to any saved locations in a
similar area. It can then either be saved as a new frequent location, or merged with an
existing one. To merge two locations together, we use the following algorithm:

42 CHAPTER 5. IMPLEMENTATION

// find furthest point on line from center1 (going away from center2)
point1 = center1.followBearingForDistance(center2.bearingTo(center1), radius1)

// find furthest point on line from center2 (going away from center1)
point2 = center2.followBearingForDistance(center1.bearingTo(center2), radius2)

// find midpoint of these two points
newCenter = averageBetween(point1, point2)

// get radius
radius = newCenter.distanceTo(point1)

Figure 5.6: An illustration of the algorithm to detect the smallest circle that
covers two circles.

At this point it may actually be the case that the new location overlaps with another
existing location. However, it would be wrong to merge these two locations if they overlap
where the calculated location has covered areas that were not covered by the original,
smaller, locations.

Developers can access frequent locations with the call:

public void getFrequentLocations(latitude, longitude, radius)

5.5 Destination Prediction

The destination predictor is built as a natural extension to the frequent location tracker.
The destination predictor creates a Markov chain consisting of the frequent locations as
states. The transitions between states represent journeys the user has been observed to
take (between frequent locations) in the past.

Each transition between locations in our Markov chain is associated with the following
elements:

5.5. DESTINATION PREDICTION 43

Time The times at which this transition should be enabled. Values were chosen to reflect
patterns users are likely to exhibit through their journeys:

• EARLY_MORNING - 5 A.M. to 8 A.M.

• MORNING - 8 A.M. to 11 A.M.

• NOON - 11 A.M. to 1 P.M.

• AFTERNOON - 1 P.M. to 5 P.M.

• EVENING - 5 P.M. to 8 P.M.

• NIGHT - 8 P.M. to 11 P.M.

• SLEEP - 11 P.M. to 5 A.M.

• BREAKFAST - EARLY_MORNING ∪ MORNING

• LUNCH - NOON ∪ AFTERNOON

• DINNER - EVENING ∪ NIGHT

• ALL_DAY

Day Days of the week for which this transition should be enabled:

• MONDAY : SUNDAY

• WEEKDAY

• WEEKEND

• ALL_WEEK

Intial Bearing The bearing the user took for the first portion of this journey. This is
used to determine the probability of a transition being taken.

A key technical challenge here was choosing when to update the values for a transition.
Due to the discrete time and day values, it became very important that the destination
predictor tried to keep the values as specific as possible, to maintain correct probabilities
for transitions. We decided to keep another variable with each transition that tracks
requests for changes. When this reaches a certain threshold, we update the prediction to
become more general (predictions always start very specific).

Users access destination predictions with the call:

public void getPredictedDestination()

This will send a message back to the user containing the predicted destination for the
current journey, or null if the user is not currently on a journey or the destination cannot
be determined. This was a design choice, as we could have potentially given the user each
of the possible predicted destinations. However, we decided it would be easier for the user
to process the results if we simply gave them the most likely destination based on the
current state.

44 CHAPTER 5. IMPLEMENTATION

5.6 Geofencing

One of the features we felt was essential to the success of this framework was the ability
for clients to be notified when the user enters (or exits) certain areas. This feature is
exposed to the developers through the following APIs:

public void registerPointOfInterest(String id, long latitude,
long longitude, float range)

public void unregisterPointOfInterest(String id)

These locations are then saved into the PointsOfInterestDatabase. Each point of interest
can be uniquely identified with the id given and the package of the client, which does not
need to be passed as a parameter as it can be determined at runtime.

The complexity of this problem lies in knowing when the device is in one of these points of
interest. A naïve solution would be to go through every point of interest whenever we get
a new location estimate, and check if any have been entered (or exited). However, since
Lokey may be used by a large number of applications, each of which may have a large
number of points of interest, this is not a practical solution. Also, location estimates may
come very frequently (especially if GPS is on), so evaluating the whole list of points at
every update would be very time consuming.

A simple optimisation to the above problem would be to sort the points of interest in
terms of distance from the current location. This way, we can stop searching through the
list as soon as we determine we are not near a certain point (as any point further down
the list must be further away). Maintaining the sorted list will not be as expensive as
going through the whole list on every update.

To obtain our general solution, we use information we already know about the user to
lazily load only the points of interest that we judge are likely to be encountered. There
are two cases:

• If a user is stationary then only points of interest which are incredibly close are
loaded (currently set to 100m).

• If a user is on a journey, every time a new location estimate is calculated we do the
following:

1. Get the new overall bearing. Use the journey speed and journey time to calcu-
late a search area radius.

2. If the previously used bearing and distance are not very different (up to some
delta) then exit

3. Retrieve form the database all points of interest which are within the distance
journey.getOveralDistance() from the last waypoint. This approximates a circle
around the last waypoint.

4. Filter these points, so only those that satisfy the following condition are kept:

5.6. GEOFENCING 45

|origin.bearingTo(point) - bearing| < δ
∧ origin.distanceTo(point) < δ’

where δ is the angle added to the bearing in both directions to create a sector
and δ’ is the distance calculated in step 1.

A crucial part of the success of this system is to reduce the number of times steps 3 and
4 are carried out. To do this, instead of running them for every location update, we only
run them if the new proposed segment is significantly different from the previous segment.
The idea is that at the start of the journey this process will happen relatively frequently,
but toward the end the segment will have become fairly large as the search radius grows
smaller as journey time decreases.

Figure 5.7: Example showing which points of interest are lazy loaded by
our system. Red drops indicate the location estimates along a route, the blue
arrow indicates the average bearing at the last drop and the blue section shows
the area in which points of interest are considered (purple crosses are points
that are loaded and black crosses are points that are not)

As shown in figure 4.1, our choice of where to place the search area makes a big difference.
If the search area has its origin at the last observed waypoint (as shown on the left), we
are able to reduce the overall size. However, this has the negative property that the search
is focused mainly at points away from the last waypoint, and any points of interest which
is close to the last waypoint but do not follow a very similar bearing are excluded.

On the right, we see the solution we have taken, which is to place the origin at the initial
waypoint. This way, even points which are a little further out but follow a similar overall
bearing are considered. The downside is that as the journey gets longer, the search area
will grow very rapidly. We have come up with two possible solutions to this problem (but
have not implemented either as they were not a key part of this investigation):

• Since the journey is so long, we are more certain about the overall bearing, and so
we can reduce the delta added to the bearing to obtain the upper and lower limit as
the length of the journey increases.

• If the journey gets long enough (say more than 10 miles), we should only consider
more recent waypoints, as the start of the journey could become either redundant

46 CHAPTER 5. IMPLEMENTATION

or irrelevant (e.g. if a driver is travelling to get to the motorway then their initial
journey will have a completely different direction to their motorway journey).

5.6.1 Interpolation

A key observation we made is that due to the intermittent nature of the location updates,
smaller geofences can be easily missed. This is shown in Figure 5.8.

Figure 5.8: Example showing a point of interest missed due to intermitent
updates.

As we can see from the figure, it is very unlikely this geofence was not entered. However,
our current system would not be able to detect this as the location reading does not lie
directly inside its perimeter. To alleviate this problem, we use the algorithm described in
Listing 5.1. This algorithm uses a number of heuristics, which means it does not catch
all cases. We feel that while this algorithm can be greatly improved, it provides a very
stable foundation. In fact, we developed a more accurate model that used circle line
intersections, but this algorithm performed better as it heuristically missed geofences that
were not crossed but looked as though they were.

Figure 5.9: Calculation of θ to determine the maximum difference in bear-
ing between the last location with the geofence center and with the current
location.

5.6. GEOFENCING 47

Listing 5.1: Algorithm to detect geofences missed due to intermittent up-
dates

distanceDiff = distanceBetween(current, last)
timeDiff = current.time - last.time

// won’t work for readings that are too far away
if distanceDiff < 200 && journey.avgSpeed > 1.2*(distanceDiff / timeDiff)

lat_last_diff = geofence.center.latitude - last.latitude
lat_cur_diff = geofence.center.latitude - current.latitude
lon_last_diff = geofence.center.longitude - last.longitude
lon_cur_diff = geofence.center.longitude - current.longitude

if last_last_diff > 0 != lat_cur_diff > 0 && lon_last_diff > 0 != lon_cur_diff > 0
bearingGeo = bearingBetween(last, geofence.center)
bearingCurrent= bearingBetween(last, current)
bearingDiff = angleDifference(bearingCurrent ,bearingGeo)
angleMargin = atan2(geofence.radius / distanceBetween(geofence, last))
if beringDiff > angleMargin

return
else if lat_last_diff > 0 != lat_cur_diff > 0

if ! (abs(lat_last_diff) < geofence.radius && abs(lat_cur_diff) < geofence.radius)
return

else if lon_last_diff > 0 != lon_cur_diff > 0
if ! (abs(lon_last_diff) < geofence.radius && abs(lon_cur_diff) < geofence.radius)

return
else

return

// if code reached this point, geofence has been entered and exited

Alerting The Client

To alert the correct client that a point of interest has been entered or exited, we have
decided to use Broadcasts and BroadcastReceivers. We found this to be the most effective
way to alert clients, as the Lokey Service will be able to alert clients even if they are not
currently bound to the service. Using this method, whenever a point of interest is entered
or exited, the LokeyService will send out a generic broadcast to the system, containing
the package (which client registered this point) and id of the point of interest.

To intercept this alert, clients must register that they want to receive this broadcast in the
manifest for their application. They must also interpret the Intent they receive correctly.
We have highlighted this process in detail in the User Guide (Appendix A).

48 CHAPTER 5. IMPLEMENTATION

5.7 Activity Tracking

public void getCurrentActivity()

This returns a message after a couple of seconds containing one of the following val-
ues:

• ACTIVITY_NONE

• ACTIVITY_WALKING

• ACTIVITY_RUNNING

• ACTIVITY_DRIVING

5.7.1 Step Detection

To detect steps, we filter the signals provided into a new signal where steps can easily be
detected. Figure 5.10 shows an example of the readings obtained by the accelerometer
whilst a user walks with the device in their pocket.

Figure 5.10: The raw values obtained from an accelerometer whilst a user
walks with the device in their pocket.

We then take the magnitude of these values and subtract 9.8 (for gravity). The results of
this are pass through a low pass filter and the differential of this gives us a signal in which
the 0 crossings represent footfalls. An example of these processing steps are shown in the
Figure 5.11.

5.7. ACTIVITY TRACKING 49

Figure 5.11: The derived values obtained from an accelerometer whilst a
user walks with the device in their pocket.

By analysing (in real time) the output of these functions (the derived magnitudes in
Figure 5.11), we can estimate an average speed in terms of footfalls per second. We use a
moving average with a window larger than the size of the average time between footfalls
to maintain a constant estimate of the current speed in footfalls per second. From this
speed value, we can detect whether the user is walking or running; we use 70 steps per
minute or below to classify the activity as walking and over 70 to classify the activity as
running.

An important thing to note here is that we only consider steps from one foot by only
considering 0-crossings that go from negative to positive. This is because we found that
when the user has the device in their pocket, steps by one foot are a lot more prominent
that the other (as is shown in Figure 5.11 by the fact that every alternate peak in the
red line has a much lower amplitude). This led to the observation that in some cases
it was very hard to detect the opposite leg moving at all, resulting in step counts being
flawed. By taking only one foot into account, we greatly improved our estimated speed
value.

5.7.2 Driving

Detecting that a user is driving is carried out in conjunction with the location tracker.
To detect driving, we see if the user is on a journey and has a certain speed, but the
accelerometer does not detect any repeated motion (as is observed by walking or running).
This does mean that many activities (such as skateboarding) would be incorrectly classified
as driving. However, we have decided to keep this functionality in anyway because a
majority of the time, if the user is moving without repeated motion, they are most likely
driving.

50 CHAPTER 5. IMPLEMENTATION

5.8 Continuous Running

One of the key components for the LokeyService to be successful would be to ensure that
it is always running on the users device. This does not necessarily mean it is regularly
computing something, but does mean it should always be alive to receive a location change
alert from Android. To ensure this was the case, a number of changes have to be made to
the code style of the service.

The first thing we had to ensure is that there is as little RAM used as possible. As
mentioned in Chapter 3.2.1, the operating system may choose to kill a service at any time
if it needs to reclaim some memory. To ensure our service is killed as infrequently as
possible, we ensure there very little memory used while the system is running.

We also must ensure that any information in local memory is always backed up to a
persistent storage. This allows the service to resume form its previous state if it were to
be killed. To allow this, we created a small library that allows services to save and resume
their state as required. Due to the fact that Android does not inform the app when a
service is killed, this does mean that we have to save the current state whenever it has
changed. An example of this is shown below:

private void save() {
String js = journey == null ? null : journey.toString();
preferences.putString(KEY_JOURNEY, js);
preferences.save();

}

5.9 Permissions

For the application itself, we created an inter-app permission system that was easily ex-
tendable. The basic idea is that in the Client table in our database, we save all the
permissions a user has granted to each client. We have, however, made the choice that
users are only in control of the raw data a client has access to. For example, if a user has
said a client should not have access to their frequent locations, this only mean the client
cannot directly access the frequent locations. The client will still be able to access other
features (such as the destination predictor) which use the frequent locations.

The permissions system relies on the permissions defined in LokeyPermissions.java. Here,
we specify all the permissions and their associated text (as shown to the user). Adding a
permission is as simple as defining a new permission here and using it where required.

The biggest challenge we had in implementing the system was how to alert the client that
a permission has been denied. As we have chosen to only allow communication through
messages, we have to send a message to the client saying a permission has been denied.
However, this does mean that the client may chose to completely ignore the callback.
In this case, they may be kept waiting for a different callback which will never come.
The only way to combat this is to inform the developers so they change their approach
accordingly.

5.10. SUMMARY 51

5.10 Summary

In this chapter, we have detailed the implementation of features discussed in Chapters 3
and 4. The underlying core technology involves analysing location updates to extract use-
ful information. Many of the features are build on the journey tracking component, which
uses location updates to track whether the user is currently on a journey or not.

Another important component is the adaptive location updates. By analysing updates,
we are able to judge when to switch from the network based location provider to the more
accurate GPS provider. We also detail our approach to solving the various problems with
Android’s current geofencing solution. Other features detailed include the creation of the
Markov model for destination prediction and clustering of frequent locations.

52 CHAPTER 5. IMPLEMENTATION

6 | Results and Evaluation

This chapter provides results observed during our final stage of testing. We show significant
reductions in battery use as well as improvements in accuracy. We will also describe the
final product, and how the user is able to interact with it.

6.1 Lokey Application

The Lokey application will be available to users for download from the Google Play Store.
This section will describe what the end users will see when they open up the application,
and how they can interact with the data their clients are using.

Figure 6.1: Lokey home page

Figure 6.1 shows what the user sees when they open Lokey. The button on the top right
is the power button. Using this button, the user can turn off Lokey’s background service,
thus turning off all functionality. The next button over takes the user to a view which
shows them details about the frequent locations Lokey has found. This is shown in Figure
6.7 and Figure 6.8.

Any active clients are listed on the home page, and the user can click on them to see more
details about the client.

53

54 CHAPTER 6. RESULTS AND EVALUATION

Figure 6.2: Clients permissions Figure 6.3: Clients call log

Figure 6.2 shows the user all permissions the client currently has, and allows the user to
change them. The topmost switch will turn off all functionality available to the client. The
little question marks allow users to ask why the application wants to use certain features.
When clicked, the user will be shown a small text bubble which displays the reason given
by the client when it first registers with Lokey.

Figure 6.3 details calls previously made by a client. The user can scroll through the Clients
history and view how they have been using their data. Entries in red mark calls that have
been rejected.

Figure 6.4: A clients registered points of interest

To give users more information about what applications are doing, we let users see which

6.2. CLIENT LIBRARY 55

points of interest a client has registered. Figure 6.4 shows the interface the user sees when
they access a clients points of interest. While the user cannot edit any points, they can
choose to disable the clients permission for points of interest so future notifications will
not go through.

Figure 6.5: The dialogs shown by Clients

Figure 6.5 shows the dialogs a client may present to the user. This first is a dialog asking
the user to install Lokey if it is not present on the users device. The second is a dialog
asking the user to grant the client permission to use Lokey’s services. The result of this
dialog is passed directly to Lokey.

6.2 Client Library

The other half of the product is the component to be bundled with every client app.
Unfortunately, Android does not currently allow library projects to be exported as Jars
(although this feature is promised for the future [10]). Instead, the source code itself must
be provided to clients in the form of an Android Library Project. This does mean that
third party developers have access to the source code for the client side of Lokey, meaning
they can see how communication is carried out. To avoid any negative repercussions of this
design, we have ensured that the main service will only accept messages from the client
service. We also ensure that all permission checking and granting is only done within the
main app, which means developers cannot illegally grant their own permissions.

A lot of work was done to ensure that the client library remained as small as possible.
This has two advantages:

• By ensuring there is as little code as possible in the client library, we reduce the
exposure of Lokey’s internal workings to developers.

56 CHAPTER 6. RESULTS AND EVALUATION

• Developers are very keen to ensure their applications remain as small as possible, so
having small libraries is often key to the success of a project.

By the end of this investigation, we managed to reduce the client library down to only
24KB, which is practically insignificant compared to the size of most applications (∼
7MB).

The following files are included in the client library:

LocationNotificationReceiver A helper class which makes it easier for clients to pro-
cess notifications that a user has entered or exited a point of interest.

LokeyClient An interface that must be extended by all Activities that wish to commu-
nicate with the client service.

LokeyClientService The communication endpoint which forwards requests from the
clients on to Lokey in the correct form, and forwards responses from Lokey back to
the appropriate listeners.

LokeyClientServiceConnection A helper class which makes it easier for developers to
connect their Activities with a LokeyClientService.

LokeyLocationTracker An interface to be extended by any class wishing to listen for
updates about the users current location.

LokeyJourneyListener An interface to be extended by any class wishing to listen for
updates indicating the user has started or stopped a journey.

LokeyVars A private class which holds key information about the communication pro-
tocols to be used between the main service and the client service.

LokeyMovementType An enum defining the kind of movement the user is currently
exhibiting.

LokeyPermissions An enum defining all the permissions the user has control over.

LokeyJourney A class encapsulating information sent to the clients about the state of
a journey.

LokeyFrequentLocation A class encapsulating the information sent to the clients about
frequent locations

These files are discussed in more detail in Appendix A.

6.3 Resource Usage

One of the key measures of performance for a continuously running application is the
amount of resources used. Applications that use extensive resources are often turned
off by users. Continuous applications that get turned off will often function incorrectly
or loose information when they are artificially stopped by the user. To avoid this, we
rigorously monitored resource usage throughout the investigation, optimising wherever
possible to keep usage to a minimum.

6.3. RESOURCE USAGE 57

6.3.1 Battery

Android provides users with a list of the most battery consuming applications on their
device. There are two major caveats associated with this list:

• The list will only contain applications that have drained the battery by a significant
amount, other applications will simply not be shown. Considering that components
like the screen, Google’s continuous polling of servers and the telephone take up a
large amount of battery usage, it often takes heavy usage by an application for it to
make it into the list.

• Google’s developers have expressed numerous times that these statistics are simply
estimates and are not to be relied upon heavily.

However, since there are no other ways to measure battery usage, we decided to use the
provided statistics. To conduct the tests in the most fair way, we used a device that was
not used for any other purpose. This reduced the impact of components like the screen
on the battery life. The device was then carried on an example users’ person for a week,
yielding the following results:

Table 6.1: Lokey battery usage over a week

Day 1 2 3 4 5 6 7
Travel Time (minutes) 51 196 28 56 63 131 348

Battery Used <1% 2% <1% <1% 1% 2% 5%

These results show that we were able to reduce the battery usage to very low amounts
even for extended periods of time. This is a result of the adaptive location updates only
getting frequent updates when the user is on a journey. This explains the direct correlation
between the time spend travelling and the battery used.

6.3.2 Main Memory

Memory is important for two reasons. Firstly, users are always wary of applications that
use too much memory as they often (wrongly) feel their device will slow down if there
is too much stored on the main memory. Secondly, Android actively stops background
applications that use too much memory in an effort to reclaim it.

While actively tracking location in the same setup as above, we observed the following
results:

Table 6.2: Lokey main memory usage over a week

Day 1 2 3 4 5 6 7
Travel Time (minutes) 51 196 28 56 63 131 348

Maximum RAM Used (MB) 9.3 12.4 8.9 8.7 9.1 11.2 12.6

A testament to the efforts of reducing the memory are shown by the fact that over the whole

58 CHAPTER 6. RESULTS AND EVALUATION

week, Lokey was only killed 4 times. Comparatively, when we started the investigation
Lokey would frequently get restarted approximately 4 times every day.

6.3.3 Persistent Memory

Persistent memory is not as important as the two measured above, but is still worth
noting as databases storing location information can often become very large and need
to be controlled. Lokey uses a significant amount of persistent memory to save the users
information.

During analyses of the memory, we found that the Journey table would grow very large
over time due to the fact that all waypoints were stored. To alleviate this, we came up
with a system that would merge common routes into one. By using this strategy we re-
duced memory usage by 600%. In fact, this figure only represents the number of journeys
repeated in a certain time, meaning the actual memory saved by incorporating this sum-
marisation technology will increase as the number of repeated journeys increases.

6.4 Geofencing

We conducted the following experiment to highlight the successes and failures of our
system when compared to Android’s current solution. Figure 6.6 shows

Figure 6.6: The experiment conducted to analyse our solution. Red circles
indicate geofences that were actually crossed and blue circles indicate geofences
that were not crossed.

6.4.1 Accuracy

We observed the following results compared to Android’s solution:

6.4. GEOFENCING 59

Table 6.3: Geofences entered according to our solution and Android’s solu-
tion

Point 1 2 3 4 5 6 7 8 9 10 11
Lokey 4 4 4 4

Android 4 4 4 4

These results provide a number of interesting discussion points. The first is Android’s
registration of geofence 3 being entered. This is clearly erroneous. After analysing the
logs of our filtering mechanism, we realised that Android has registered this as entered
because an update near geofence 3 had a large area of uncertainty which happened to
cross into the third geofence. Whilst Lokey filtered this out, the Android implementation
seems to have kept it.

The second interesting point is the Lokey registered point 5, whereas Android did not.
This is due to our interpolation between points. We check if any geofences lie between
consecutive updates to make sure no obvious geofences were missed. In this case we found
that we had missed geofence 5, and so notified clients that it had been crosses. On the
other hand, Android does not do this and so missed it completely.

The last point to note is that both our solution and the current Android solution missed the
seventh geofence. Because there was no location update in this area, neither solution was
aware the geofence had been crossed. This highlights the limitation of our interpolation
system; it only checks for geofences that were crossed directly between subsequent location
updates. This geofence lay in the path taken by the user, but was not directly between
the two updates and so was completely missed.

Overall, our solution improves upon the current Android solution in terms of accuracy. By
using the filtered values and our interpolation system, we can more accurately determine
when geofences are entered and exited.

6.4.2 Battery Use

One of the key faults with the current Android ‘proximity alerter’ is the battery use.
Developers have been complaining for years that this feature is almost un-useable once
there are a significant number of geofences. While conducting the experiment above,
it was impossible measure battery use, as the two solutions had to be run within the
same application to ensure they got the same updates. Therefore, we had to conduct the
experiment two more times, one with only Android’s solution enabled and one with only
our solution enabled.

By the end of this journey (which was a 30 minute walk), the Android solution had
consumed 3% of the users battery. In contrast, our solution had consumed < 1% of the
battery (it didn’t even register on the scale). It is interesting to note that our solution
loaded up geofences 2, 3, 5, 6, 7, 8 and 9. This shows allowed Lokey to use far fewer
comparisons over the course of the journey than if it simply looked through everything.
You can imagine there may be more geofences nowhere near this area, all of which Lokey
ignored.

60 CHAPTER 6. RESULTS AND EVALUATION

On the other hand, the Android solution starts a new location listener for every new point
of interest. This means there are far more comparisons carried out. Table ?? highlights
the differences when there are more and more geofences added:

Table 6.4: Amount of battery consumed by Geofencing modules over a 30
minute journey

Geofences 10 100 1000
Lokey <1% 1% 3%
Android 3% 7% 22%

6.5 Frequent Locations Found

Figure 6.7 shows the frequent locations that were found by Lokey over a period of 6
days. Going from left to right, the markers indicate my flat, the department of computing
at Imperial, and the offices of a startup in London. Interestingly, I visited a number
of restaurants around London over this period, which are not shown. As mentioned in
Chapter 5, a frequent location is only saved if the user visits it more than once in a certain
period of time; I had only visited these restaurants once each.

Figure 6.7: The frequent loca-
tions found after 6 days of use

Figure 6.8: The details of a fre-
quent location

6.6 Destinations Predicted

Figure 6.9 describes the model that had been created at the end of the six day period
described above.

6.7. KITES 61

Figure 6.9: The model created after 6 days of use

As we can see, journeys which are conducted frequently, such as form my home to Impe-
rial, quickly converge to a correct value. However, something we did not think of whilst
implementing this feature is that often users will walk towards the same place no matter
what destination they are headed towards. For example, from my home most of the places
I will go to involve me going to the closest train station. This bearing cannot accurately
be split into multiple destinations.

Therefore, after gathering our results we changed the weighting of the Markov model
to account for this additional factor. The final product uses a more complex weighting;
suppose there was a location has many outgoing routes with the same initial bearing and
only a few different initial bearings. If a new journey starts such that the initial bearing
matches the very common initial bearing, then bearing will not be used at all to judge the
likelihood of destinations. However, if the bearing matches one of the less commonly seen
bearings, the bearing will be used heavily to influence the predicted destination.

6.7 Kites

We decided early on that one of the principal ways to evaluate the success of the project
will be to create a sample application which uses Lokey for all its location services. We
would then compare the development time for this compared to how long it would take if
we were to develop the application from scratch.

The application we decided to develop primarily uses Lokey’s points of interest. The app
is called Kites, and allows a user to leave notes for their friends at a location. When a user
approaches an area around which there is a note that has been left for them, Kites will
alert the user. Screenshots of Kites being used can be seen in Appendix B. It also makes
use of the users frequent locations to show friends where users like to hang out.

Producing this app without Lokey would take a far longer time. Implementing a service
that constantly tracks the users location and checks any registered points of interest when

62 CHAPTER 6. RESULTS AND EVALUATION

required would require a significant amount of time and would be essentially duplicating
functionality available for free in Lokey. As a rough estimate, we concluded it would take
at least another week of solid effort by us to re-implement this feature for Lokey; this
is an estimate of how long it would take us to replicate the work on geofencing done in
Lokey.

6.8 Developer Feedback

After conducting the investigation, we asked a subset of the initial group of developer
consulted on their thoughts about the results. The consensus reached by the majority
of them (who were the more amateur Android developers within the group) was that
they would not know how to connect to the service. They were worried about Android
component life cycle events not being handled correctly as certain things need to be
done. We then showed them the Developer Guide (Appendix A), which they said they
understood and were more confident they could implement it.

The more advanced developers seemed interested by the product. They were asking more
technical questions about resource usage and accuracy. Any developers who had not
been convinced by the in-app permission system during the initial questioning had their
doubts settled when they actually played around with the user interface. The majority of
comments praised the ease of use (for the users).

However, some developers did still show a degree of distrust in relying on another appli-
cation. They were worried that developers may not understand how the system works,
leading to even further mistrust. We agreed that there may be an initial hurdle the users
will have to mentally get over to understand what is being done. As this is not standard
Android behaviour, developers were also worried future releases of Android may cause
some parts of the communication between apps to change, meaning their apps may be left
stranded without Lokey.

6.9 Summary

In this chapter, we present the results achieved by our framework. By filtering loca-
tions and applying smarter technologies, we are able to drastically cut the amount of
battery consumed by our geofencing service. We achieved results significantly better than
Android’s current system. The framework was also able to accurately learn the users
frequent locations. Using this, Lokey was able to generate a Markov model accurately
describing possible journeys between frequent locations.

Initial developer feedback was positive, with developer praising the results achieved. We
also built a sample application, Kites, which uses Lokey for all its location requirements.
Minimal effort was required to get complex features such as frequent locations and ge-
ofencing up and running in very little time.

7 | Conclusion

The aim of this investigation was to produce a framework that allows developers to easily
integrate complex location features within their mobile apps. We also wanted to help users
understand what data apps were requesting about them. These aims are both qualitative
rather than quantitative, but initial feedback seems to suggest users and developers have
responded well to the framework.

During the course of this investigation, we have produced an application that will reside
on the user’s device and continuously track their location. The novel concept is that this
data is then used by developers (so they can build more location aware applications) as
well as the users themselves (so they can see what the app knows about them and even
change things if they want to). A further novel concept is logging all calls made by clients
to allow users to keep track of what data clients are requesting. We also created an in-app
permissions system allowing users to dynamically allow or disallow individual clients to
use certain aspects of the framework.

Features of the framework were chosen with a group of Android developers whose expe-
rience ranges from beginners to experts. We implemented 5 core features, which were
well received when the developers were re-questioned at the end of the investigation. On
May 16th at Google I/O, Android announced they would be improving their geofencing
features in a number of ways similar to the techniques we have developed through this
investigation. While this is disappointing as we had been developing accurate geofencing
as our primary selling point, it shows we are on the right direction. This emphasises that
developers do not have enough to work with yet, and more location features will continue
to make apps smarter.

Initial results have shown that our techniques are able to accurately track users movement,
frequent journeys and frequent locations. We have implemented a geofencing solution that
is more efficient and accurate than Android’s (current) solution. While these results are
positive, there is still much room for improvement. The current modules do not leverage
each other for maximum potential. For example, the geofencing module could make use
of the saved journeys and destination prediction to improve its lazy loading.

7.1 Future Work

While the framework is in a complete form, Lokey will not be released to the public yet.
The user interface shown here is merely a proof of concept as the intended goal for the
final product will allow more interaction by the user. We have shown here that users can

63

64 CHAPTER 7. CONCLUSION

access their data and change certain parts (the frequent locations). However, the final
release will allow users to access and change anything that is saved about them.

There are a number of other features and ideas we contemplated during this investigation,
but decided they were not necessary in making this project a success.

Learning

While we have used some machine learning techniques in this investigation, we believe
extending the system to learn and truly understand the user would be very helpful for
developers. For example, in the destination prediction module we have used certain time
intervals to split up the day. However, this would be a lot more accurate if we used a
more probabilistic approach. We could then potentially create a Bayesian classifier to help
predict the next destination.

Similar to the work done by Zhuang et al. [22], we have implemented adaptive providers.
However, they extend this work to learn the applicability of these providers along the users
common routes and frequent locations. This would require extending our current system
to allow routes and locations to be saved with the preferred providers. While our current
solution performs moderately well, implementing a more robust adaptive strategy would
definitely improve the accuracy of readings, although maintaining our level of battery use
may be a potential issue.

Routes

During the course of this investigation we have treated a journey as a collection of way-
points. A more advanced technique would use maps to deduce an actual route from these
waypoints. This would involve understanding where roads are and estimating where users
have turned and crossed over etc. Using routes would allow a far more thorough analysis
of a users movement. However, this kind of calculation would require far more resources,
most likely requiring a large amount of communication with a server calculating these
values.

Density Prediction

This idea came about in one of the talks with the developers. If a large enough number of
users start using Lokey, a system can be built to predict the number of people in certain
areas. For example, this data could be used to calculate the number of people that visit
a gym at certain times of the day.

Sub-Locations

Currently, when constructing frequent locations, we either merge or split them. We do not
allow overlapping or any other relations of any sort. Ashbrook et al. [1] use sub-locations
when learning a users frequent locations. This allows for a single location to contain a
number of smaller locations e.g. different departments in university.

7.1. FUTURE WORK 65

Other Devices

A key observation made by the developers we consulted was the disparity of features
available on Android compared to iOS and Windows Phone 7. This meant developers had
to implement their own versions of features if they wanted a cross platform application
that behaved in a similar way across devices. Extending Lokey to be available on other
platforms would allow developers to have a common interface when implementing their
applications. A system like this would allow developers to feel more comfortable when
creating cross platform apps as they would know any work done on one platform can be
easily replicated on another.

Cloud Processing

Initially, this investigation aimed to produce a framework which was to use cloud services
for data storage and calculations. However, after talking to a number of users we found
they would not be comfortable with all their location data stored somewhere else. De-
velopers also expressed concerns about the speed and availability of results if data was
only stored in the cloud. For this reason we decided to cut any cloud services form the
framework. However, we still feel an online component for Lokey would be beneficial to
developers as some features (e.g. the density prediction mentioned above) will only be
possible with a more global picture rather than individual user information.

Allowing some work to be done in the cloud could also provide enhanced security for
users. For example, we could monitor how users are allocating permissions. If we find
that lots of users are blocking a certain application, we could contact the developer and
ask them to address specific issues. Or if we find some apps are definitely misusing data,
we could remotely add applications to a blacklist which stops them access Lokey on any
device.

Mocking

An interesting idea developed by researchers at Cambridge is to allow users to ‘mock’
permissions granted to applications. They call thisMockDroid [2]. We see a lot of potential
in this idea. The way Lokey has been built would allow a very useful extension following
this principal. We could allow users to specify that they want clients to see certain ‘wrong’
information. For example, the user could set up Lokey to show a specific application
completely different frequent locations from their actual frequent locations. This would
allow users to potentially see how their data is being used (not just what data is being
used) by observing the behaviour of applications once their data has been mocked.

66 CHAPTER 7. CONCLUSION

A | Developer Guide

This guide will walk you through Lokey’s features. It assumes knowledge of how to build
Android applications and their various components. The guide describes techniques used
to produce the sample application Kites.

A.1 Downloading and Installing

The first step to integrating Lokey services within your application is to download the client
library. The client library is available from www.rockolabs.com/lokey/download/client.zip.
After extracting this folder, the library can be imported into your IDE using the import
existing project command. Your project must then reference this library project (as with
normal library projects).

The next steps are to declare the following in your applications manifest:

<uses-permission android:name="com.rockolabs.lokey.permission.ACCESS_LOKEY"/>
<application>

...
<service android:name="com.rockolabs.lokey.client.LokeyClientService"/>
<service android:name="com.rockolabs.lokey.service.LokeyService"/>

</application>

The first line is the permission that is required for any application to use Lokey. The
other two lines simply declare that this app will use the services mentioned. Your IDE
will probably complain that it cannot locate com.rockolabs.lokey.service.LokeyService. You
should ignore this error, as it simply declares it cannot find the class but does not mean
the program will not run.

A.2 Hooking up to a LokeyClientService

All interaction with Lokey is done through the LokeyClientService. This service can be
treated as any other service. The first thing to do is ensure the Activity you want to
access Lokey within is declared to implement the interface LokeyClient. This allows use
to monitor certain aspects of the activities lifecycle while you can still extend third party
activities, e.g. the common SherlockActivity.

67

68 APPENDIX A. DEVELOPER GUIDE

We have provided a class LokeyClientServiceConnection, which makes connecting to the
LokeyClientService simpler. To use this, you simply create a new instance in your Activity.
You must then bind to the client service using this connection in the onStart method and
unbind in the onStop method.

All of the above points are highlighted by the following Activity snippet:

1 public class MainActivity extends Activity implements LokeyClient {
2 private LokeyClientServiceConnection serviceConnection;
3

4 @Override
5 public void onCreate(Bundle savedInstanceState) {
6 ...
7 serviceConnection = new LokeyClientServiceConnection(this);
8 }
9

10 @Override
11 protected void onStart() {
12 super.onStart();
13 if (!serviceConnection.bound) {
14 Intent intent = new Intent(this, LokeyClientService.class);
15 bindService(intent, serviceConnection, BIND_AUTO_CREATE);
16 startService(intent);
17 }
18 }
19

20 @Override
21 protected void onStop() {
22 super.onStop();
23 if (serviceConnection.bound) {
24 unbindService(serviceConnection);
25 serviceConnection.bound = false;
26 }
27 }
28

29 @Override
30 protected void onDestroy() {
31 super.onDestroy();
32 stopService(new Intent(this, LokeyClientService.class));
33 }
34

35 @Override
36 public void serviceConnected() {
37 // Do whatever you want with the service!
38 }
39 }

Note: using the serviceConnection.bound field allows you to check whether the service has
bound to the client yet or not. You should not make any calls before you have checked
the service has been bound.

A.3 Querying Current Information

There are a number of ways to get information about the users current location state.
It should be noted that all calls to the LokeyClientService are asynchronous due to the

A.3. QUERYING CURRENT INFORMATION 69

nature of communication between this service and the main service run by the Lokey
application. While the results are expected to be calculated within seconds, certain calls
may take a bit longer and your applications should be written to accommodate this.

Current Location

Using the call getCurrentLocation(), you will immediately be returned the last location
calculated by Lokey. This will often be a location that has been heavily filtered and refined
from Android’s own location tracking system. We also manage sources efficiently so GPS
will be used whenever possible, and network location will be used at all other times.

This call requires the CURRENT_LOCATION permission.

Current Journey

We also provide a couple of calls to check the current status of the users journey. The
first call is isCurrentlyOnJourney(). This will return true if the user is currently moving
around, and false if the user is currently stationary or is in an area deemed to be a single
place e.g. in a shopping mall or university.

The second call related to journeys is getCurrentJourneyDetails(). If the user is not
currently on a journey this will return null. If the user is on a journey, you will receive a
JourneyDetails object. This holds all the information known about the current journey
the user is on.

This call requires the JOURNEY_DETAILS permission.

Common Routes

Lokey allows you to view the users more common routes. To access these, you can use
the call getCommonRoutes(latitude, longitude, radius). This will return a list of Common-
Route objects encapsulating routes the user has frequently taken. The list is ordered in
descending order of number of visits. The parameters passed prevent abuse of the users
data. You can only retrieve common routes in a certain area. The radius parameter has
a maximum value of 20km (any value above this will simply be cut off).

This call requires the VIEW_ROUTES permission.

Frequent Locations

Lokey also exposes an API for applications to access a users most frequently visited loca-
tions. This is done using the call getFrequentRoutes(latitude, longitude, radius). This will
return a list of FrequentLocation objects, which encapsulate a place the user has frequently
visited. The parameters, similarly to the above call, are used to stop abuse of Lokey’s
information. Only frequent locations within the specified area will be returned by this
call.

This call requires the FREQUENT_LOCATIONS permission.

70 APPENDIX A. DEVELOPER GUIDE

Predicted Destinations

Lokey allows your applications to access where we the think user is going. If the user is
on a journey, the call getPredictedDestination() will return which of the frequent locations
we predict the user is headed towards. The result of this call will be a FrequentLocation
which will encapsulate the area we believe the user is headed towards.

This call requires the PREDICTED_DESTINATIONS permission.

Current Activity

Lokey can use the accelerometer to predict the user’s current activity. Applications can
access this using the call getCurrentActivity(seconds). The call returns a member of the
LokeyMovementType enum. The parameter passed in is the time for which the user’s
motion should be analysed. The minimum value is 5 seconds and the maximum value is
60 seconds. the lower limit enforces there is enough time to gain a somewhat accurate
estimate, and the upper limit is enforced to stop the battery being drained too fast.

This call requires the ACTIVITY permission.

A.4 Location Updates

As well as requesting the current location, Lokey provides an interface for applications to
receive constant, filtered and adjusted location updates. This enables your applications
to have a constant knowledge of the users location using Lokey’s proprietary filtering
techniques. To register and unregister your listener you must simply use:

1 lokeyService.startTrackingLocation(listener);
2 ...
3 lokeyService.stopTrackingLocation(listener);

The listener passed in must implement the class LokeyLocationTracker. It is very impor-
tant that clients unregister their listeners when their application is closed, otherwise the
client service may crash and the user will be notified of this.

A.5 Geofencing

Geofencing allows your client to be updated when the user enters or exits a certain area.
To enable geofencing for your client, you must first create a BroadcastReceiver that will
receive these updates. To make this even easier, we provide the class LokeyPointOfInter-
estReceiver. Your receiver should extend this class, and implement the required function.
An example of this is shown below:

A.6. JOURNEY UPDATES 71

1 public class KitesLocationNotificationReceiver extends LokeyPointOfInterestReceiver {
2 private NoteManager noteManager;
3

4 @Override
5 public void enteredLocation(String id) {
6 Note note = noteManager.findNoteBy(id);
7 alertUserAboutNote(note);
8 }
9

10 @Override
11 public void exitedLocation(String id) {
12 ...
13 }
14 }

You must also register to receive the broadcast. This is done in the manifest, as shown be-
low (making sure to replaceKitesPointOfInterestReceiver with your own receiver cast:

<application>
...
<receiver android:name="com.rockolabs.kites.KitesPointOfInterestReceiver">

<intent-filter>
<action android:name="com.rockolabs.lokey.geofencing"/>

</intent-filter>
</receiver>

</application>

Geofences can then be registered as:

1 for (Note note : retrieveMyNotes())
2 {
3 lokeyService.registerPointOfInterest(note.getId(), note.getLatitude(),

note.getLongitude(), note.getRadius());
4 }

It is essential that developers unregister geofences as soon as they can using the call
unregisterPointOfInterest(id). This allows Lokey to reduce the amount of computational
load incurred whenever the location changes.

This functionality requires the GEOFENCING permission.

A.6 Journey Updates

Journey updates work in a similar way to Geofencing. Your application can register to be
woken when the user starts or ends their journey. The receiver you must extend to receive
these notifications is the LokeyJourneyChangeReceiver :

72 APPENDIX A. DEVELOPER GUIDE

1 public class KitesJourneyChangeReceiver extends LokeyJourneyChangeReceiver {
2 @Override
3 public void journeyStarted(long startLatitude, long startLongitude, long time) {
4 ...
5 }
6

7 @Override
8 public void journeyEnded(JourneyDetails details) {
9 ...

10 }
11 }

You must then declare the receiver to receive the following action:

<application>
...
<receiver android:name="com.rockolabs.kites.KitesJourneyChangeReceiver">

<intent-filter>
<action android:name="com.rockolabs.lokey.journey"/>

</intent-filter>
</receiver>

</application>

This functionality requires the JOURNEY_DETAILS permission.

A.7 Permissions

An important factor of Lokey is the users ability to deny certain privileges to applications.
Following this, your application must be responsive to the fact that users may not want
certain parts of their information used by your application. There are two main ways
Lokey provides clients with information about permission.

The first is by requesting the status of a permission yourself. Your application may use
the following call to check whether the user has granted a specific permission:

public void checkPermission(LokeyPermission permission)

The other way to check for the status of a permission is to wait to get a permission denied
call. Every LokeyClient must implement the function

public void permissionDenied(LokeyPermission permission) { ... }

Inside this function, you should write your code which deals with the denial of a permission.
For example, you may show the user a dialog explaining why the permission is required,
or simply turn off certain functionality within your application. It is important to note
that the LOKEY permission is required for all calls.

B | Kites Screenshots

Figure B.1: Users are allowed
to log in via either Facebok or
Google Plus

Figure B.2: The map view
shows where the users friends
have left notes for them

73

74 APPENDIX B. KITES SCREENSHOTS

Figure B.3: The view allowing
the user to read a note that was
left for them, as well as more de-
tails about the note

Figure B.4: An example notifi-
cation created by Kites when the
user approaches a note left for
them

Bibliography

[1] Daniel Ashbrook and Thad Starner. “Learning significant locations and predicting
user movement with GPS”. In: Wearable Computers, 2002.(ISWC 2002). Proceed-
ings. Sixth International Symposium on. IEEE. 2002, pp. 101–108.

[2] Alastair R Beresford et al. “MockDroid: trading privacy for application function-
ality on smartphones”. In: Proceedings of the 12th Workshop on Mobile Computing
Systems and Applications. ACM. 2011, pp. 49–54.

[3] Amiya Bhattacharya and Sajal K Das. “LeZi-update: an information-theoretic ap-
proach to track mobile users in PCS networks”. In: Proceedings of the 5th annual
ACM/IEEE international conference on Mobile computing and networking. ACM.
1999, pp. 1–12.

[4] Max J. Egenhofer. “Spatial SQL: A query and presentation language”. In: Knowledge
and Data Engineering, IEEE Transactions on 6.1 (1994), pp. 86–95.

[5] Apple Inc. Location Awareness Programming Guide. url: http : / / developer .
apple.com/library/ios/#documentation/userexperience/conceptual/LocationAwarenessPG/
CoreLocation/CoreLocation.html (visited on 05/21/2013).

[6] Google Inc. Android Location Services. url: http://developer.android.com/
guide/topics/location/index.html (visited on 05/21/2013).

[7] Google Inc. Android Location Strategies. url: http://developer.android.com/
guide/topics/location/strategies.html (visited on 05/21/2013).

[8] Google Inc. Android Open Source Project. url: http://source.android.com/
(visited on 05/21/2013).

[9] Google Inc. Android Services. url: http://developer.android.com/reference/
android/app/Service.html (visited on 05/21/2013).

[10] Google Inc. Android Services. url: http : / / developer . android . com / tools /
projects/index.html (visited on 05/21/2013).

[11] Groupon Inc. Groupon Android Application. url: https://play.google.com/
store/apps/details?id=com.groupon (visited on 05/21/2013).

75

76 BIBLIOGRAPHY

[12] Adrian Kingsley-Hughes. It’s revenue, not market share, that’s attracting devs to
iOS. url: http://www.zdnet.com/its-revenue-not-market-share-thats-
attracting-devs-to-ios-7000016615/ (visited on 06/10/2013).

[13] R. Libby. A Simple Method for Reliable Footstep Detection in Embedded Sensor
Platforms. 2009.

[14] Greg Milette and Adam Stroud. Professional Android sensor programming. Wrox,
2012.

[15] Andrew Ofstad et al. “Aampl: Accelerometer augmented mobile phone localization”.
In: Proceedings of the first ACM international workshop on Mobile entity localization
and tracking in GPS-less environments. ACM. 2008, pp. 13–18.

[16] Jeongyeup Paek, Joongheon Kim, and Ramesh Govindan. “Energy-efficient rate-
adaptive gps-based positioning for smartphones”. In: Proceedings of the 8th interna-
tional conference on Mobile systems, applications, and services. ACM. 2010, pp. 299–
314.

[17] PCMag.com. Android Nears 75 Percent Smartphone Market Share. url: http://
www.pcmag.com/article2/0,2817,2418945,00.asp (visited on 05/21/2013).

[18] Nishkam Ravi et al. “Activity recognition from accelerometer data”. In: Proceedings
of the national conference on artificial intelligence. Vol. 20. 3. Menlo Park, CA;
Cambridge, MA; London; AAAI Press; MIT Press; 1999. 2005, p. 1541.

[19] Jun Rekimoto, Takashi Miyaki, and Takaaki Ishizawa. “LifeTag: WiFi-based con-
tinuous location logging for life pattern analysis”. In: Lecture Notes in Computer
Science 4718 (2007), p. 35.

[20] Steven J. Vaughan-Nichols. How Google–and everyone else–gets Wi-Fi location data.
url: http://www.zdnet.com/blog/networking/how-google-and-everyone-
else-gets-wi-fi-location-data/1664 (visited on 05/21/2013).

[21] H. Ying et al. “Automatic step detection in the accelerometer signal”. In: 4th Inter-
national Workshop on Wearable and Implantable Body Sensor Networks (BSN 2007).
Springer. 2007, pp. 80–85.

[22] Zhenyun Zhuang, Kyu-Han Kim, and Jatinder Pal Singh. “Improving energy effi-
ciency of location sensing on smartphones”. In: Proceedings of the 8th international
conference on Mobile systems, applications, and services. ACM. 2010, pp. 315–330.

